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Abstract

A text-to-speech(TTS) system is one of the human-machine interfaces using speech.
In recent years, TTS system is developed as an output device of human-machine
interfaces, and it is used in many application such as a car navigation system, in-
formation retrieval over the telephone, voice mail, a speech-to-speech translation
system and so on. However, although most text-to-speech systems still cannot syn-
thesize speech with various voice characteristics such as speaker individualities and
emotions. To obtain various voice characteristics in text-to-speech systems based on
the selection and concatenation of acoustical units, a large amount of speech data is
necessary. However, it is difficult to collect, segment, and store it. From these points
of view, in order to construct a speech synthesis system which can generate various
voice characteristics, an HMM-based text-to-speech system has been proposed. This
dissertation presents the construction of the HMM-based text-to-speech system, in

which spectrum, fundamental frequency and duration are modeled simultaneously
in a unified framework of HMM.

In the system, mainly three techniques are used; (1) a mel-cepstral analysis/synthesis
technique, (2) speech parameter modeling using HMM and (3) a speech parameter
generation algorithm from HMM. Since the system uses above three techniques,
the system has several capabilities. First, since the T'TS system uses the speech
parameter generation algorithm, the generated spectral and pitch paramters from
the trained HMMs can be similar to those of real speech. Second, by transforming
HMM parameters appropriately, voice characteristics of synthetic speech can be
changed since the system generates speech from the HMMs. Third, this system
is trainable. In this thesis, first, the above three techniques are presented, and
simultaneous modeling of phonetic and prosodic parameters in a framework of HMM
is proposed.

Next, to improve of the quality of synthesized speech, the mixed excitation model of
the speech coder MELP and postfilter are incorporated into the system. Experimen-
tal results show that the mixed excitation model and postfilter significantly improve
the quality of synthesized speech.

Finally, for the purpose of synthesizing speech with various voice characteristics



such as speaker individualities and emotions, the TTS system based on speaker
interpolation is presented.
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Chapter 1

Introduction

1.1 Text-to-speech(TTS) system

Speech is the natural form of human communication, and it can enhance human-
machine communication. A text-to-speech(TTS) system is one of the human-machine
interface using speech. In recent years, TTS system is developed an output device
of human-machine interface, and it is used in many application such as a car naviga-
tion system, information retrieval over the telephone, voice mail, a speech-to-speech
translation system and so on. The goal of TTS system is to synthesize speech with
natural human voice characteristics and, furthermore, with various speaker individ-
ualities and emotions (e.g., anger, sadness, joy).

The increasing availability of large speech databases makes it possible to construct
TTS systems, which are referred to as data-driven or corpus-based approach, by
applying statistical learning algorithms. These systems, which can be automatically
trained, can generate natural and high quality synthetic speech and can reproduce
voice characteristics of the original speaker.

For constructing such a system, the use of hidden Markov models (HMMs) has arisen
largely. HMMs have successfully been applied to modeling the sequence of speech
spectra in speech recognition systems, and the performance of HMM-based speech
recognition systems have been improved by techniques which utilize the flexibil-
ity of HMMs: context-dependent modeling, dynamic feature parameters, mixtures
of Gaussian densities, tying mechanism, speaker and environment adaptation tech-
niques. HMM-based approaches to speech synthesis can be categorized as follows:

1. Transcription and segmentation of speech database [1].

2. Construction of inventory of speech segments [2]-[5].

4



3. Run-time selection of multiple instances of speech segments [4], [6].

4. Speech synthesis from HMMs themselves [7]-[10].

In approaches 1-3, by using a waveform concatenation algorithm, e.g., PSOLA al-
gorithm, a high quality synthetic speech could be produced. However, to obtain
various voice characteristics, large amounts of speech data are necessary, and it is
difficult to collect, segment, and store the speech data. On the other hand, in ap-
proach 4, voice characteristics of synthetic speech can be changed by transforming
HMM parameters appropriately. From this point of view, parameter generation
algorithms [11], [12] for HMM-based speech synthesis have been proposed, and a
speech synthesis system [9], [10] has been constructed using these algorithms. Actu-
ally, it has been shown that voice characteristics of synthetic speech can be changed
by applying a speaker adaptation technique [13], [14] or a speaker interpolation
technique [15]. The main feature of the system is the use of dynamic feature: by
inclusion of dynamic coefficients in the feature vector, the dynamic coefficients of
the speech parameter sequence generated in synthesis are constrained to be realistic,
as defined by the parameters of the HMMs.

1.2 Proposition of this thesis

The proposed TTS system is shown in Fig. 1.1. This figure shows the training and
synthesis parts of the HMM-based TTS system. In the training phase, first, spectral
parameters (e.g., cepstral coefficients) and excitation parameters (e.g., fundamen-
tal frequency) are extracted from speech database. The extracted parameters are
modeled by context-dependent HMMs. In the systhesis phase, a context-dependent
label sequence is obtained from a input text by text analysis. A sentence HMM is
constructed by concatenating context dependent HMMs according to the context-
dependent label sequence. By using the parameter generation algorithm, spectral
and excitation parameters are generated from the sentence HMM. Finaly, by using
a synthesis filter, speech is synthesized from the generated spectral and excitation
parameters.

In this thesis, it is roughly assumed that spectral and excitation parameters include
phonetic and prosodic information, respectively. If these phonetic and prosodic pa-
rameters are modeled in a unified framework of HMMs, it is possible to apply speaker
adaptation / interpolation techniques to phonetic and prosodic information, simul-
taneously, and synthesize speech with various voice characteristics such as speaker
individualities and emotions. From the point of view, the phonetic and prosodic
parameter modeling technique and the voice conversion technique are proposed in
this thesis.



Speech signal
SPEECH

DATABASE
Excitation Spectral

parameter parameter
extraction extraction
Excitation parameter ’ i i ‘ Spectral parameter
Training of HMM ini
Label g Tralnlr{g part

Synthesis part

Q 8 Q 3,88 .. | Context dependent

TEXT HMMs

|

Text analysis

! Label Parameter generation
from HMM
Excitation parameter i ‘ ’ l Spectral parameter
Excitation Synthesis SYNTHESIZED
generation filter SPEECH

Figure 1.1: The scheme of the HMM-based TTS system.

The remainder of this thesis is organized as follows:

In Chapters 2—4, the following fundamental techniques of the HMM-based speech
synthesis are described:

e Mel-cepstral analysis and synthesis technique (Chapter 2)
e Speech parameter modeling based on HMM (Chapter 3)

e Speech parameter generation from HMM (Chapter 4)

Chapter 5 presents construction of the proposed HMM-based TTS system in which
spectrum, fundamental frequency (F0), duration are modeled by HMM simultane-
ously, and Chapter 6 discribes how to synthesize speech. In Chapter 7, mixed
excitation model is incorporated into the proposed TTS system in order to improve
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quality of synthesized speech. Chapter 8 presents how to synthesize speech with
various voice characteristics, appling speaker interpolation technique to HMM-based
TTS. Finally Chapter 9 draws overall conclusions and describes possible future
works.

1.3 Original contributions

This thesis describes new approaches to synthesize speech with natural human voice
characteristics and with various voice characteristics such as speaker individuality
and emotion. The major original contributions are as follows:

e Speech parameter generation using multi-mixture HMM.

e Duration modeling for the HMM-based TTS system.

e Simultaneous modeling of spectrum, F0 and duration.

e Training of context dependent HMM using MDL principle.
e F0 parameter generation using dynamic features.

e Automatic training of the HMM-based TTS system.

e Improvement of the quality of the synthesized speech by incorporating the
mixed excitation model and postfilter into the HMM-based T'TS system.

e Voice conversion using a speaker interpolation technique.



Chapter 2

Mel-cepstral Analysis and
Synthesis Technique

The proposed TTS system is based on source-filter model. In order to construct
the system, first, it is necessary to extract feature parameters, which describe the
vocal tract, from speech database for training. For all the work in this thesis, the
mel-cepstral analysis [16] is used for spectral estimation. This chapter describes
the mel-cepstral analysis, how feature parameters, i.e., mel-cepstral coefficients, are
extracted speech signals and how speech is synthesized from the mel-cepstral coef-
ficients.

2.1 Source-filter model

To treat a speech waveform mathematically, source-filter model is generally used
to represent sampled speech signals, as shown in 2.1. The transfer function H(z)
models the structure of vocal tract. The excitation source is chosen by a switch
which controls the voiced/unvoiced character of the speech. The excitation signal
is modeled as either a periodic pulse train for voiced speech, or a random noise
sequence for unvoiced speech. To produce speech signal z(n), the parameters of the
model must change with time. The excitation signal e(n) is filtered by a time-varying
linear system H(z) to generate speech signals z(n).

The speech z(n) can be computed from the excitation e(n) and the impulse response
h(n) of the vocal tract using the convolution sum expression

z(n) = h(n) * e(n) (2.1)

where the symbol * stands for discrete convolution. The details of digital signal
processing and speech processing are given in Ref. [17]

8



Fundamental frequency

Vocal Tract
Periodic pulse Parameter
train H\C v o
Synthesis Filter ynthesize
e(n) speech
White noise —© h(n) #(1) = h(n) % e(n)

Figure 2.1: Source-filter model.

2.2 Mel-cepstral analysis

In mel-cepstral analysis[16], the model spectrum H (/%) is represented by the M-th
order mel-cepstral coefficients é(m) as follows:

H(z) = exp z_:o ¢(m)z™™m, (2.2)

where )
1 e
= < 1. 2.3
=0 (23)
1

The phase characteristic of the all-pass transfer function 27! = ¢77% is given by

. (1—a?)sinw
(14 a?)cosw — 2a

@ = tan (2.4)
For example for a sampling frequency of 16kHz, @ is a good approximation to the
mel scale based on subjective pitch evaluations when a = 0.42(Tab. 2.1).

To obtain an unbiased estimate, we use the following criterion [18] and minimize it

with respect to ¢(m)M_,

E = QL /7; exp R(w) — R(w) — ldw, (2.5)

TmwJ—

where

R(w) = log In(w) — log|H ()|, (2.6)

and Iy(w) is the modified periodogram of a weakly stationary process xz(n) with a
time window of length N. To take the gain factor K outside from H(z), we rewrite
Eq.(2.2) as:
M
H(z) =exp > b(m)®,(z) = K - D(z), (2.7)

m=0



Table 2.1: Examples of « for approximating auditory frequency scales.

Sampling frequency || Mel scale | Bark scale
8kHz 0.31 0.42
10kHz 0.35 0.47
12kHz 0.37 0.50
16kHz 0.42 0.55
where
K = exp b(0), (2.8)
M
D(z) =exp Y_ b(m)®.,(z), (2.9)
m=0
and
] oe(m) m=M
b(m) = { cim) —ab(m+1) 0<m<M (2.10)
1 m =0
o = —a?)z! :
m(z) (Gl R > 1 (2.11)
1 —az!

Since H(z) is a minimum phase system, we can show that the minimization of £
with respect to 6(m)%:0 is equivalent to that of

. i Q [N(w) o
=51 D(ey] ™" (2.12)
with respect to
b= [b(1),b(2),---,b(M)]". (2.13)

The gain factor K that minimizes E is obtained by setting g—IE( =0

K = \/Zomin (2.14)

where €,,,;, is the minimized value of e.

2.3 Synthesis filter

The synthesis filter D(z) of Eq.(2.9) is not a rational function and, therefore, it can-
not be realized directly. Howerver, using Mel Log Spectrum Approximation filter

10



Table 2.2: Coeflicients of Ry(w).

Ay
4.999273 x 1071
1.067005 x 10~1
1.170221 x 1072
5.656279 x 1074

W N |~

(MLSA filter) [19], the synthesis filter D(z) can be approximated with sufficient ac-
curacy and becomes minimum phase IIR system. The complex exponential function
exp w is gpproximated by a rational function

expw =~ Rp(F(2))

L
14 Z AL,lwl
= A : (2.15)
1 + Z AL,l(—w)l
=1
Thus D(z) is approximated as follows:
Ri(F(z)) >~ exp(F(z)) = D(z) (2.16)
where F(z) is defined by
M
F(z) =Y b(m)®(2). (2.17)
m=1

The filter structure of F(z) is shown in Fig. 2.2(a). Figure 2.2(b) shows the block
diagram of the MLSA filter Ry (F(z)) for the case of L = 4.

When we use the coefficients Ay; show in Tab. 2.2, R4(F'(2)) is stable and becomes
a minimum phase system under the condition

|F(e’)] < 6.2. (2.18)

Further more, we can show that the approximation error | log D(e/*)—log Ry(F (¢?%))|
does not exceed 0.24dB[20] under the condition

|F(e?)] < 4.5. (2.19)

When F(z) is expressed as
F(z) = Fi(2) + F»(2) (2.20)

11



the exponential transfer function is approximated in a cascade form

D(z) = expF(z)

= exp Fi(2) - exp F2(2)
~ Rp(Fi(2)) - Rp(Fy(2)) (2.21)
as shown in Fig. 2.2(c). If
max |F1(ej‘“)|,mgx |Fy(e?)] < max |F (7)), (2.22)

it is expected that Ry (F;(e’?)) - Ry (Fy(e’*)) approximates D(e?*) more accurately
than Ry (F(e?)).

In the following experiments, we let

Fi(z) = b(1)@:(2) (2.23)
Fy(z) = ZQb(m)qu(z). (2.24)

Since we empirically found that
max |F1(ej‘“)|,mgx |Fy(e?)| < 4.5 (2.25)

for speech sounds, Ry (Fi(2))-Rr(Fz(z)) approximates the exponential transfer func-
tion D(z) with sufficient accuracy and becomes a stable system.

12
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Figure 2.2: Implementation of Synthesis filter D(z).
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Chapter 3

Speech Parameter Modeling
Based on HMM

The most successful and widely used acoustic models in recent years have been
Hidden Markov Models (HMMs). Practically all major speech recognition systems
are generally implemented using HMM. This chapter describes how to model spectral
and excitation parameters in a framework of HMM.

3.1 Spectral parameter modeling

3.1.1 Continuous density HMM

In this thesis, a continuous density HMM is used for the vocal tract modeling in the
same way as speech recognition systems. The continuous density Markov model is a
finite state machine which makes one state transition at each time unit (i.e, frame).
First, a decision is made to which state to succeed (including the state itself). Then
an output vector is generated according to the probability density function (pdf) for
the current state. An HMM is a doubly stochastic random process, modeling state
transition probabilities between states and output probabilities at each state.

One way of interpreting HMMs is to view each state as a model of a segment of
speech. Figure 3.1 shows an example of representation of a speech utterance using a
N-state left-to-right HMM where each state is modeled by a multi-mixture Gaussian
model. Assume that this utterance(typically parameterized by speech analysis as
the D-dimensional observation vector o;) is divided into N segments d; which are
represented by the states S;. The transition probability a;; defines the probability
of moving from state i to state j and satisfies a;; +a;; = 1. Then, each state can be
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Figure 3.1: Representation of a speech utterance using a five-state HMM.

modeled by a M-mixtures Gaussian density function:

bj (Ot) = CjkN(Ota Mk, 2]k>

M
=1
O {50 =m0~ )} )

ik 1 XD —5(0r — ;)" By (0r — i) ¢ (3
—1 ’ (271')%|Ejk|% 2 ’ 7w ’

k
k
where cj, pjr and Xj; are the mixture coefficient, D-dimensional mean vector and
D x D covariance matrix(full covariance matrix) for the k-th mixture component
in the j-th state, respectively. This covariance can be restricted to the diagonal
clements (diagonal covariance matrix) when the elements of the feature vector are
assumed to be independent. |3;;| is the determinant of X;, and E;kl is the inverse
of ¥,,. The mixture gains c¢;;, satisfy the stochastic constraint

M
Yeg=1, 1<j<N (3.2)
k=1

>0, 1<j<N1<k<M (3.3)

15
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so that the pdf is properly normalized, i.e.,

/Oo bi(o)do, 1<j<N (3.4)

— 00

Since the pdf of Eq. (3.1) can be used to approximate, arbitrarily closely, any finite,
continuous density function, it can be applied to a wide range of problems and is
widely used for acoustic modeling.

For convenience, to indicate the complete parameter set of the model, we use the
compact notation
A= (A,B,7), (3.5)

where A = {a;;}, B = {b;(0)} and 7 = {m;}. 7, is the initial state distribution of
state ¢, and it have the property

0, i£1
W:{L il (3.6)

in the left-to-right model.

3.1.2 Probability calculation

For calculation of P(O|\), which is the probability of the observation sequence O =
(01,09, --,07) given the model A, forward-backward algorithm is generally used.
If we calculate P(O|\) directly without this algorithm, it requires on the order of
2T N2 calculation. On the other hand, calculation using forward-backward algorithm
requires on the order of N2T calculations, and it is computationally feasible. In the
following part, forward-backward algorithm is described.

The forward algorithm

Consider the forward variable oy (i) defined as
at(i) :P<017027"'70t7qt :Z|>\) (37)

that is, the probability of the partial observation sequence from 1 to t and state ¢
at time ¢, given the model A\. We can solve for o4(7) inductively, as follows:

1. Initialization
O[l(i) = Wibi(ol), 1 S lleqN (38)
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2. Induction

N
) ) 1<t<T -1
i) = S el o). 1255 (39
i=1 =J =
3. Termination
P(O|XN) = ZO‘T (3.10)

The backward algorithm

In the same way as forward algorithm, consider the backward variable (3(i) defined
as

B(i) = P(os+1,0:+2,---,07|q: =i, \) (3.11)

that is, the probability of the partial observation sequence from t to T', given state
i at time ¢ and the model A\. We can solve for §;(¢) inductively, as follows:

1. Initialization

Br(i)=1, 1<i<N. (3.12)
2. Induction
t=T-1,T-2,---,1
Zazg (0441)Be1(J), 1<i<N (3.13)
3. Termination
P(OJA) = Zﬁl (3.14)

The forward-backward probability calculation is based on the trellis structure shown
in Fig. 3.2. In this figure, the x-axis and y-axis represent observation sequence and
states of Markov model, respectively. On the trellis, all the possible state sequence
will remerge into these N nodes no matter how long the observation sequence. In
the case of the forward algorithm, at times ¢ = 1, we need to calculate values of
ap(), 1 <i < N. At times t = 2,3,---,T, we need only calculate values of o(75),
1 < j < N, where each calculation involves only the N previous values of a;_1(7)
because each of the N grid points can be reached from only the N grid points at
the previous time slot. As the result, the forward-backward algrorithm can reduce
order of probability calculation.

17
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Figure 3.2: Implementation of the computation using forward-backward algorithm
in terms of a trellis of observation ¢ and state <.

3.1.3 Parameter estimation of continuous density HMM

It is difficult to determine a method to adjust the model parameters (A, B, ) to
satisfy a certain optimization criterion. There is no known way to analytical solve for
the model parameter set that maximizes the probability of the observation sequence
in a closed form. We can, however, choose A = (A, B, m) such that its likelihood,
P(O|)), is locally maximized using an iterative procedure such as the Baum-Welch
method(also known as the EM(expectation-maximization method))[21], [22].

To describe the procedure for reestimation of HMM parameters, first, the probability
of being in state ¢ at time ¢, and state 5 at time ¢ + 1, given the model and the
observation sequence, is defined as follows:

&(1,7) = Pg: =1, g1 = j[O, A), (3.15)

From the definitions of the forward and backward variables, &z, j) is writen in the
form

. Plae=1,q41 = j]O,N)
ft(%]) - P(O|/\)
_ (1) aijb; (0111 8141(7)) (3.16)

Z (1) aijbj(0s11641(7))

i=17=1
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Using &(i, j), the probability of being in state i at time ¢, given the entire observation
and the model, is represented by

V(1) = ;gt(@j) (3.17)

@-function

The reestimation formulas can be derived directly by maximizing Baum’s auxiliary
funciton

Q(N,\) =3 P(0O,q|\)log P(O,q|)) (3.18)
over A. Because
QN A) = QN A) = P(O,q|N) > P(O,q|}) (3.19)

We can maximize the function Q(X, \) over A to improve A in the sense of increasing
the likelihood P(O, q|A).

Maximization of ()-function

For given observation sequence O and model X, we derive parameters of A which
maximize Q(N, ). P(O,q|)\) can be written as

T
P(O,q|\) = Tqo Ha‘h—lfhb%(ot) (3.20)
=1
T T
log P(O,q|\) = logm, + Zlog Qg g + Zlog by, (0t) (3.21)
=1 =1

Hence @Q-function (3.18) can be written as

Q. A) = Q(X,pi)

T
+ Zle ()\/7 bz)
t=1

P(0,q0 = i|\) log;

I
AMZ

s
Il
—_

+
M=
™=

<

Il
—
o+

I
—

P(OaQt—l =1,q = j|)\/) logaij

P(O, ¢ = i|\') log b;(0;) (3.22)

_|_
M=

4~
Il
—
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where
T o= [m,m, -, TN (3.23)
a, = [ai1,a2, -, an], (3.24)

and b; is the parameter vector that defines b;(-). The parameter set A\ which maxi-
mizes (3.22), subject to the stochastic constraints

i\[:ﬂ'j = 1, (3.25)
ivjaij = 1, (3.26)
ﬁ/l:cj‘k = 1, (327)
/fo bj(0)do = 1, (3.28)
can be derived as
o= @6 _ g (3.20)
ZQT(J)

Zoét—1(i)az‘jbj(0t)5t(j) th—l(l}j)

a; = = = =1 (3.30)

Z; —1(2) B-1(4) 2%71(2')

The reestimation formulas for the coefficients of the mixture density, i.e, ¢, pjx
and X, are of the form

G = L (3.31)
;'I;Vt(jak)
Z'Yt(],k) O¢

e = L (3.32)
Z/yt(]7k)
D (k) - (0r — i) (0 — i)

S, = 2 - (3.33)

Z/yt(]7k)
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Figure 3.3: Example of FO pattern.
(3.34)

where v,(j, k) is the probability of being in state j at time ¢ with the kth mixture
component accounting for oy, i.e.,

o (7)Bi(5) cikN (04, pik, Xjr)
N M
Y a(5)B(G) | | D N (ot e, Zijr)
j=1 m=1

V(4. k) = (3.35)

3.2 FO parameter modeling

¢

The FO pattern is composed of continuous values in the “voiced” region and a
discrete symbol in the “unvoiced” region (Fig.3.3). Therefore, it is difficult to apply
the discrete or continuous HMMs to FO pattern modeling. Several methods have
been investigated [23] for handling the unvoiced region: (i) replacing each “unvoiced”
symbol by a random vector generated from a probability density function (pdf) with
a large variance and then modeling the random vectors explicitly in the continuous
HMMs [24], (ii) modeling the “unvoiced” symbols explicitly in the continuous HMMs
by replacing “unvoiced” symbol by 0 and adding an extra pdf for the “unvoiced”
symbol to each mixture, (iii) assuming that FO values is always exist but they cannot
observed in the unvoiced region and applying the EM algorithm [25]. In this section,
A kind of HMM for FO pattern modeling, in which the state output probabilities
are defined by multi-space probability distributions (MSDs), is described.
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3.2.1 Multi-Space Probability Distribution

We consider a sample space {2 shown in Fig. 3.4, which consists of G spaces:
a
Q= 9 (3.36)
g=1

where g is an ng-dimensional real space R"s, and specified by space index g. Each
space 1, has its probability wy, i.e., P(€,;) = w,, where 25:1 wy = 1. If ng > 0, each
space has a probability density function N, (x), @ € R", where [gpn, Ny(x)dz = 1.
We assume that )y contains only one sample point if n, = 0. Accordingly, letting
P(FE) be the probability distribution, we have

G G
P(Q) = ;P(Qg) — z_jlwg /R N (@)dw =1, (3.37)

It is noted that, although N,(z) does not exist for n, = 0 since §2, contains only
one sample point, for simplicity of notation, we define as N,(x) =1 for n, = 0.

Each event E, which will be considered in this thesis, is represented by a random
variable o which consists of a continuous random variable x € R" and a set of space
indices X, that is,

o= (x,X) (3.38)

where all spaces specified by X are n-dimensional. The observation probability of
o is defined by

o) = 3 upy(V(o) (3.39)
geS(o
where
V(io)=z, S(o)=2X. (3.40)

Some examples of observations are shown in Fig. 3.4. An observation o, consists of
three-dimensional vector &; € R* and a set of space indices X; = {1, 2, G}. Thus
the random variable z is drawn from one of three spaces Qy, €, Q¢ € R?, and its
probability density function is given by wyNi(x) + welNo(x) + weNg(x).

The probability distribution defined in the above, which will be referred to as multi-
space probability distribution (MSD) in this thesis, is the same as the discrete distri-
bution and the continuous distribution when n, = 0 and n, = m > 0, respectively.
Further, if S(o) = {1, 2, ..., G}, the continuous distribution is represented by a
G-mixture probability density function. Thus multi-space probability distribution
is more general than either discrete or continuous distributions.
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Figure 3.4: Multi-space probability distribution and observations.

3.2.2 Multi-space distribution HMM

The output probability in each state of MSD-HMM is given by the multi-space
probability distribution defined in the previous section. An N-state MSD-HMM A\
is specified by initial state probability distribution 7 = {r; }j\f:l, the state transition
probability distribution A = {a;;}¥ and state output probability distribution

i, j=1
B = {b;(-)}X,, where

bi(o) = Y wy Ny(V(o)), i=1,2,...,N. (3.41)

g€S(o)

As shown in Fig. 3.5, each state i has G probability density functions Nj;(-), N(+),
.., Nig(+), and their weights w;1, wia, . .., wig.
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Figure 3.5: An HMM based on multi-space probability distribution.

Observation probability of O = {01, 09, ..., 0r} is written as

P(O|N) = Z Ha‘h—lfh th(ot)

all ¢ t=1
T
= Z H Qg _1q: Wauly NQzlz (V(Ot)) (342)
all gl t=1

where ¢ = {q1, @2, - . ., qr} is a possible state sequence, l = {ly,ls,...,lr} € {S(01) X
S(07)%...xS(or)} is a sequence of space indices which is possible for the observation
sequence O, and a,,; denotes ;.

The forward and backward variables:
(i) = P(01,09,...,04q =i|\) (3.43)
Bt(l) = P(Ot+1, 0t+27 ey 0T|Qt = ’l., )\) (344)

can be calculated with the forward-backward inductive procedure in a manner simi-
lar to the conventional HMMs. According to the definitions, (3.42) can be calculated
as

PO[N) = ;&T(’i) = ;ﬁl(i)- (3.45)
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The forward and backward variables are also used for calculating the reestimation
formulas derived in the the next section

3.2.3 Reestimation algorithm for MSD-HMM training

For a given observation sequence O and a particular choice of MSD-HMM, the ob-
jective in maximum likelihood estimation is to maximize the observation likelihood
P(O|\) given by (3.42), over all parameters in A. In a manner similar to [21], [22], we
derive reestimation formulas for the maximum likelihood estimation of MSD-HMM.

@-function

An auxiliary function Q(N,A) of current parameters A and new parameter \ is
defined as follows:

QN A) = > P(0O,q,l|N)log P(O,q.1)) (3.46)

all q,1

In the following, we assume Ny(-) to be the Gaussian density with mean vector p,,
and covariance matrix 3;,.

Theorem 1

QW A) 2 QN, N) — P(O,\) = P(O, X)

Theorem 2 If, for each space §, there are among V(01), V(02), ..., V(or), ng+1
observations g € S(o.), any ng of which are linearly independent, Q(N',\) has a
unique global mazimum as a function of A, and this maximum is the one and only
critical point.

Theorem 3 A parameter set X\ is a critical point of the likelihood P(O|)\) if and
only if it is a critical point of the Q-function.

We define the parameter reestimates to be those which maximize Q(X,\) as a
function of A, A\’ being the latest estimates. Because of the above theorems, the
sequence of resetimates obtained in this way produce a monotonic increase in the
likelihood unless A is a critical point of the likelihood.
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Maximization of ()-function

For given observation sequence O and model X, we derive parameters of A which

maximize Q(N, ). From (3.42), log P(O, q,l|)\) can be written as
log P(O, q,1|})

= Z (10g Qg1 + 1Og Wayly + IOqutlt(V(Ot))) .

t=1

Hence Q-function (3.46) can be written as

N

=Y P(O,q =ilN)logm;
i1

N T-1

+ > > PO, ¢ =1i,q1 = j|N)logay

ij=1 t=1

N G
+Y > > PO, g =i, = g|N)logwig

i=1 g=1teT(0,9)

N G
+3°3 > P(O,q =11, = g|]N)log Nig(V(01))

i=1g=1t€T(0,g)

where

T(0,g) = {t|g € S(o:)}.

(3.47)

(3.48)

(3.49)

The parameter set A = (7, A, B) which maximizes (3.48), subject to the stochastic

constraints YN | m = 1, Z;V:l a;; = 1 and Zngl wy = 1, can be derived as

o= >, 7(,9)

geS(o1)
T—1
> &)
t=1

T-1

> Y )

t=1 geS(ot)

Z ”Yt'lg

teT(0,9)
G

Z Z (i, h)

h=1teT(0,h)

Z IYt 279 t)

teT(0,9)

l’l’z’ = )
! Z ”Yt'lg

teT(0,9)

ng >0
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(3.51)
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Z’Yé(i’ 9)(V(o;) — Hz‘g)(v(ot) - Nz‘g)T

teT(0,9)
> i, g) ’

t€T(0.9)

g

ng > 0 (3.54)

where (7, h) and &(, j) can be calculated by using the forward variable oy (i) and
backward variable (3,(i) as follows:
”Yt('i, h) = P(qt = 'i, lt = h\O, )\)
a()Bi(@)  winNin(V(0r))

S Lo (3.55)
LIOLI) gesz(ot) iV (00)
&(1,7) = Pl =1,q41 = 7|0, N)
_ (1) aijb;(0141) Bra1(J) (3.56)

Z Z_: ar(h)ankby(0441) Brv1 (k)

From the condition mentioned in Theorem 2, it can be shown that each X, is
positive definite.

3.2.4 Application to FO pattern modeling

The MSD-HMM includes the discrete HMM and the continuous mixture HMM
as special cases since the multi-space probability distribution includes the discrete
distribution and the continuous distribution. If ny = 0, the MSD-HMM is the same
as the discrete HMM. In the case where S(o;) specifies one space, i.e., |S(o)| = 1,
the MSD-HMM is exactly the same as the conventional discrete HMM. If |S(o;)| > 1,
the MSD-HMM is the same as the discrete HMM based on the multi-labeling VQ
[26]. If n, = m > 0 and S(o) = {1, 2, ..., G}, the MSD-HMM is the same as
the continuous G-mixture HMM. These can also be confirmed by the fact that if
ngy = 0 and |S(o;)| = 1, the reestimation formulas (3.50)-(3.52) are the same as those
for discrete HMM of codebook size G, and if n, = m and S(o:) = {1, 2, ..., G},
the reestimation formulas (3.50)-(3.54) are the same as those for continuous HMM
with m-dimensional G-mixture densities. Further, the MSD-HMM can model the
sequence of observation vectors with variable dimension including zero-dimensional
observations, i.e., discrete symbols.

While the observation of FO has a continuous value in the voiced region, there exist
no value for the unvoiced region. We can model this kind of observation sequence
assuming that the observed FO value occurs from one-dimensional spaces and the
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“unvoiced” symbol occurs from the zero-dimensional space defined in Section 3.2.1,
that is, by settingn, =1(¢g=1,2, ..., G—1), ng =0 and

1 {1,2,...,G—1},  (voiced)
S(o) = { {G}, (unvoiced) ’ (3.57)

the MSD-HMM can cope with FO patterns including the unvoiced region without
heuristic assumption. In this case, the observed F0 value is assumed to be drawn
from a continuous (G — 1)-mixture probability density function.
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Chapter 4

Speech parameter generation from
HMM

The performance of speech recognition based on HMMs has been improved by incor-
porating the dynamic features of speech. Thus we surmise that, if there is a method
for speech parameter generation from HMMs which include the dynamic features, it
will be useful for speech synthesis by rule. This chapter derives a speech parameter
generation algorithm from HMMs which include the dynamic features.

4.1 Speech parameter generation based on maxi-
mum likelihood criterion

For a given continuous mixture HMM A, we derive an algorithm for determining
speech parameter vector sequence

O = {olT,ozT,...,oﬂT (4.1)
in such a way that
PON = Y P(O.Q) (1.2
all Q
is maximized with respect to O, where
Q = {(q1,%1), (g2, %2), - . ., (qr,i7)} (4.3)

is the state and mixture sequence, i.e., (q,7) indicates the i-th mixture of state
q. We assume that the speech parameter vector o, consists of the static feature
vector ¢; = [c4(1), ¢(2), ..., c;(M)]T (e.g., cepstral coefficients) and dynamic feature
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vectors Acy, A%c; (e.g., delta and delta-delta cepstral coefficients, respectively), that
is, 0; = [¢], Ae], A%c]]T, where the dynamic feature vectors are calculated by

Acy = Z w(l)(T)ct+‘r

A%e, = Z w®? (T)Ctsr-

We have derived algorithms [11], [12] for solving the following problems:

(4.4)

(4.5)

Case 1. For given A and @, maximize P(O|Q,\) with respect to O under the

conditions (4.4), (4.5).

Case 2. For a given )\, maximize P(O,Q|\) with respect to Q and O under the

conditions (4.4), (4.5).

In this section, we will review the above algorithms and derive an algorithm for the

problem:

Case 3. For a given A\, maximize P(O|\) with respect to O under the conditions

(4.4), (4.5).

4.1.1 Case 1: Maximizing P(O|Q, \) with respect to O

First, consider maximizing P(O|Q, \) with respect to O for a fixed state and mixture

sequence Q. The logarithm of P(O|Q, \) can be written as
1
log P(0|Q, \) = —aoTU—lo +0'U'M+ K

where

Ul = diag|U,,. U,

1,817~ q2,127 "

T
_ T T T
M = |:MQ1,i1’uq27i2’"'7IJIQT7iTi|

LU

qriT

(4.6)

(4.7)
(4.8)

Ky, i, and Uy, ;, are the 3M X 1 mean vector and the 3M X 3M covariance ma-
trix, respectively, associated with 7-th mixture of state ¢;, and the constant K is

independent of O.

30



It is obvious that P(O|Q, \) is maximized when O = M without the conditions
(4.4), (4.5), that is, the speech parameter vector sequence becomes a sequence of
the mean vectors. Conditions (4.4), (4.5) can be arranged in a matrix form:

O=WwcC (4.9)
where
C i, ¢, er] (4.10)
W = ['wl,'wg,.. T]T (411)
w, = ['wt ,wt ,w,@} (4.12)
wgn) = [OMXMa .- OMxMaw(n)(_L(f)>IM><M’
1st (t—L™)th
w0V gy - W™ (LY T s,
t-th (t+L")-th
OMXM,"'7OMXM]Ta n:07172 (413)
T-th

LY = LSE) =0, and w®(0) = 1. Under the condition (4.9), maximizing P(O|Q, \)
with respect to O is equivalent to that with respect to C. By setting
dlog PIWC|Q, \)
oC

=0, (4.14)
we obtain a set of equations
wl'u'wec=w'u'M". (4.15)

For direct solution of (4.15), we need O(T®M?) operations'because W U 'W is a
TM x TM matrix. By utilizing the special structure of WU W, (4.15) can be
solved by the Cholesky decomposition or the QR decomposition with O(TM3L?)
operations?, where L = max,e(12}se{—+} L. Equation (4.15) can also be solved
by an algorithm derived in [11], [12], which can operate in a time-recursive manner

[28].

4.1.2 Case 2: Maximizing P(O,Q|)\) with respect to O and
Q

This problem can be solved by evaluating maxe P(O, Q|\) = maxc P(O|Q, \)P(Q|))
for all Q. However, it is impractical because there are too many combinations of

'When U,; is diagonal, it is reduced to O(T3M) since each of the M-dimensions can be
calculated independently.

*When U, ; is diagonal, it is reduced to O(TML?). Furthermore, when L(j) = -1, L$) =0,
and w® (i) = 0, it is reduced to O(T'M) as described in [27].
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(. We have developed a fast algorithm for searching for the optimal or sub-optimal
state sequence keeping C' optimal in the sense that P(O|Q, ) is maximized with
respect to C' [11], [12].

To control temporal structure of speech parameter sequence appropriately, HMMs
should incorporate state duration densities. The probability P(O, Q|)\) can be writ-

ten as P(O,Q|N) =
P(O,i|lq,\)P(q|\), where gq = {g1, 92, qr}, 1 = {iy, ia,
...,ir}, and the state duration probability P(q|\) is given by
N
log P(q|\) = 21 log pg,(dq,) (4.16)

where the total number of states which have been visited during 7" frames is N, and
Dgn (dyg,,) 1s the probability of d,, consecutive observations in state g,. If we determine
the state sequence g only by P(g|\) independently of O, maximizing P(O, Q|)\) =
P(0O,1i|q, \)P(q|)\) with respect to O and @Q is equivalent to maximizing P(O, i|q, \)
with respect to O and 2. Furthermore, if we assume that state output probabilities
are single-Gaussian, % is unique. Therefore, the solution is obtained by solving (4.15)
in the same way as the Case 1.

4.1.3 Case 3: Maximizing P(O|)\) with respect to O

We derive an algorithm based on an EM algorithm, which find a critical point of
the likelihood function P(OJ)\). An auxiliary function of current parameter vector
sequence O and new parameter vector sequence Q' is defined by
Q(0,0') = Y P(0,Q) log P(O, Q|V). (4.17)
all Q
It can be shown that by substituting O which maximizes Q(O,O") for O, the

likelihood increases unless O is a critical point of the likelihood. Equation (4.17)
can be written as

Q(0,0') = P(O\) {—%O’TFO’ +OU M + F} (4.18)
where

Ul = diag|ULUL, UL (4.19)
U = > ule.)Ug; (4.20)

v
U'M = [U;lulT,UgluzT,...,mT : (4.21)
Uil = 2 00U,y by, (4.22)

v
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and the constant K is independent of O'. The occupancy probability (g, 4) defined
by

’Yt(% Z) = P(Qt = (Q7i)’07 >‘) (4'23)

can be calculated with the forward-backward inductive procedure. Under the con-
dition O' = W', C'" which maximizes Q(O, Q') is given by the following set of
equations:

w'u'wc' =w'Uu'M. (4.24)

The above set of equations has the same form as (4.15). Accordingly, it can be
solved by the algorithm for solving (4.15).

The whole procedure is summarized as follows:

Step 0. Choose an initial parameter vector sequence C.

Step 1. Calculate (g, i) with the forward-backward algorithm.

Step 2. Calculate U™' and U™'M by (4.19)-(4.22), and solve (4.24).

Step 3. Set C = C'. If a certain convergence condition is satisfied, stop; otherwise,
goto Step 1.

From the same reason as Case 2, HMMs should incorporate state duration densi-
ties. If we determine the state sequence g only by P(g|\) independently of O in a
manner similar to the previous section, only the mixture sequence % is assumed to
be unobservable?. Further, we can also assume that Q is unobservable but phoneme
or syllable durations are given.

4.2 Example

A simple experiment of speech synthesis was carried out using the parameter gener-
ation algorithm. We used phonetically balanced 450 sentences from ATR Japanese
speech database for training. The type of HMM used was a continuous Gaussian
model. The diagonal covariances were used. All models were 5-state left-to-right
models with no skips. The heuristic duration densities were calculated after the
training. Feature vector consists of 25 mel-cepstral coefficients including the zeroth
coefficient, their delta and delta-delta coefficients. Mel-cepstral coefficients were ob-
tained by the mel-cepstral analysis. The signal was windowed by a 25ms Black man
window with a 5ms shift.

3For this problem, an algorithm based on a direct search has also been proposed in [29].
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Figure 4.1: Spectra generated with dynamic features for a Japanese phrase “chi-
isanaunagi”.

4.2.1 Effect of dynamic feature

First, we observed the parameter generation in the case 1, in which parameter
sequence O maximizes P(O|Q, \). State sequence () was estimated from the re-
sult of Veterbi alignment of natural speech. Fig. 4.1 shows the spectra calculated
from the mel-cepstral coefficients generated by the HMM, which is composed by
concatenation of phoneme models. Without the dynamic features, the parame-
ter sequence which maximizes P(O|Q, \) becomes a sequence of the mean vectors
(Fig. 4.1(a)). On the other hand, Fig. 4.1(b) and Fig. 4.1(c) show that appropriate
parameter sequences are generated by using the static and dynamic feature. Look-
ing at Fig. 4.1(b) and Fig. 4.1(c) closely, we can see that incorporation of delta-delta
parameter improves smoothness of generated speech spectra.

Fig 4.2 shows probability density functions and generated parameters for the zero-th
mel-cepstral coefficients. The x-axis represents frame number. A gray box and its
middle line represent standard deviation and mean of probability density function,
respectively, and a curved line is the generated zero-th mel-cepstral coefficients.
From this figure, it can be observed that parameters are generated taking account
of constraints of their probability density function and dynamic features.
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Figure 4.2: Relation between probability density function and generated parameter
for a Japanese phrase “unagi” (top: static, middle: delta, bottom: delta-delta).
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4.2.2 Parameter generation using multi-mixuture HMM

In the algorithm of the case 3, we assumed that the state sequence (state and mixture
sequence for the multi-mixture case) or a part of the state sequence is unobservable
(i.e., hidden or latent). As a result, the algorithm iterates the forward-backward
algorithm and the parameter generation algorithm for the case where state sequence
is given. Experimental results show that by using the algorithm, we can reproduce
clear formant structure from multi-mixture HMMs as compared with that produced
from single-mixture HMMs.

It has found that a few iterations are sufficient for convergence of the proposed
algorithm. Fig. 4.3 shows generated spectra for a Japanese sentence fragment “kiN-
zokuhiroo” taken from a sentence which is not included in the training data. Fig. 4.4
compares two spectra obtained from single-mixure HMMs and 8-mixture HMMs, re-
spectively, for the same temporal position of the sentence fragment. It is seen from
Fig. 4.3 and Fig. 4.4 that with increasing mixtures, the formant structure of the
generated spectra get clearer.

We evaluated two synthesized speech obtained from single-mixure HMMs and 8-
mixture HMMs by listening test, where fundamental frequency and duration is ob-
tained from natural speech. Figure 4.5 shows the result of pair comparison test.
From the listening test, it has been observed that the quality of the synthetic speech
is considerably improved by increasing mixtures.

When we use single-mixture HMMs, the formant structure of spectrum correspond-
ing to each mean vector p,; might be vague since p,; is the average of different
speech spectra. One can increase the number of decision tree leaf clusters. However,
it might result in perceivable discontinuities in synthetic speech since overly large
tree will be overspecialized to training data and generalized poorly. We expect that
the proposed algorithm can avoid this situation in a simple manner.
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Figure 4.5: The result of the pair comparison test.
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Chapter 5

Construction of HMM-based
Text-to-Speech System

Phonetic parameter and prosodic parameter are modeled simultaneously in a unified
framework of HMM. In the proposed system, mel-cepstrum, fundamental frequency
(FO) and state duration are modeled by continuous density HMMs, multi-space
probability distribution HMMs and multi-dimensional Gaussian distributions, re-
spectively. The distributions for spectrum, FO0, and the state duration are clustered
independently by using a decision-tree based context clustering technique. This
chapter describes feature vector modeled by HMM, structure of HMM and how to
train context-dependent HMM.

5.1 Calculation of dynamic feature

In this thesis, mel-cepstral coefficient is used as spectral parameter. Mel-cepstral
coefficient vectors c are obtained from speech database using a mel-cepstral analysis
technique [16]. Their dynamic feature Ac and A?c are calculated as follows:

1 1
ACt = —ict_l + §Ct+1, (51)
1 1 1
AQCt = th—l — éct + ZCt_H. (52)

In the same way, dynamic features for FO are calculated by

1 1
ope = _iptfl + ithrla (5.3)
1 1 1
§p; = Zpt—l - §pt + Zpt-&-l- (5.4)
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represents a continous value ( voiced ).

represents a discrete symbol ( unvoiced ).

Unvoiced region Voiced region Unvoiced region
Delta-delta 5py
Delta Opy
Static Pt—1f Pt [Pt+1
1 t T

Frame number

Figure 5.1: Calculation of dynamic features for FO.

where, in unvoiced region, p;, dp; and §p; are defined as a discrete symbol. When
dynamic features at the boundary between voiced and unvoiced can not be calcu-
lated, they are defined as a discrete symbol. For example, if dynamic features are
calculated by Eq.(5.3)(5.4), 0p; and 47 at the boundary between voiced and unvoiced
as shown Fig. 5.1 become discrete symbol.

5.2 Spectrum and FO modeling

In the chapter 3, it is described that sequence of mel-cepstral coefficient vector and
FO pattern are modeled by a continuous density HMM and multi-space probability
distribution HMM, respectively.

We construct spectrum and FO models by using embedded training because the
embedded training does not need label boundaries when appropriate initial models
are available. However, if spectrum models and FO models are embedded-trained
separately, speech segmentations may be discrepant between them.

To avoid this problem, context dependent HMMs are trained with feature vector
which consists of spectrum, FO and their dynamic features (Fig. 5.2). As a result,
HMM has four streams as shown in Fig. 5.3.
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5.3 Duration modeling

5.3.1 Overview

There have been proposed techniques for training HMMs and their state duration
densities simultaneously (e.g., [30]). However, these techniques require a large stor-
age and computational load. In this thesis, state duration densities are estimated
by using state occupancy probabilities which are obtained in the last iteration of
embedded re-estimation [31].

In the HMM-based speech synthesis system described above, state duration densities
were modeled by single Gaussian distributions estimated from histograms of state
durations which were obtained by the Viterbi segmentation of training data. In this
procedure, however, it is impossible to obtain variances of distributions for phonemes
which appear only once in the training data.

In this thesis, to overcome this problem, Gaussian distributions of state durations
are calculated on the trellis(Section 3.1.2) which is made in the embedded training
stage. State durations of each phoneme HMM are regarded as a multi-dimensional
observation, and the set of state durations of each phoneme HMM is modeled by
a multi-dimensional Gaussian distribution. Dimension of state duration densities is
equal to number of state of HMMs, and nth dimension of state duration densities
is corresponding to nth state of HMMs!. Since state durations are modeled by
continuous distributions, our approach has the following advantages:

e The speaking rate of synthetic speech can be varied easily.

e There is no need for label boundaries when appropriate initial models are
available since the state duration densities are estimated in the embedded
training stage of phoneme HMMs.

In the following sections, we describe training and clustering of state duration mod-
els, and determination of state duration in the synthesis part.

5.3.2 Training of state duration models

There have been proposed techniques for training HMMs and their state duration
densities simultaneously, however, these techniques is inefficient because it requires
huge storage and computational load. From this point of view, we adopt another
technique for training state duration models.

'We assume the left-to-right model with no skip.
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State duration densities are estimated on the trellis which is obtained in the em-
bedded training stage. The mean £(i) and the variance o%(i) of duration density of
state ¢ are determined by

i) = , (5.5)
2—21 Z: Xto,t1 (2)
Z Z Xto,t1 (2)@1 — o+ 1)2
i) = = — &£%(3), (5.6)

respectively, where xy, 4 (7) is the probability of occupying state ¢ from time ¢, to t;
and can be written as

Xito.t1 (1) = (1 = y19-1(7)) - ﬂ (1) - (1= 741(2)), (5.7)

t=to

where 7;(7) is the occupation probability of state ¢ at time ¢, and we define y_; (i) =
Yr+1(2) = 0.

5.4 Context dependent model

5.4.1 Contextual factors

There are many contextual factors (e.g., phone identity factors, stress-related factors,
locational factors) that affect spectrum, FO and duration. In this thesis, following
contextual factors are taken into account:

e mora? count of sentence

e position of breath group in sentence
e mora count of {preceding, current, succeeding} breath group
e position of current accentual phrase in current breath group

e mora count and accent type of {preceding, current, succeeding} accentual
phrase

2A mora is a syllable-sized unit in Japanese.
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e {preceding, current, succeeding} part-of-speech
e position of current phoneme in current accentual phrase

e {preceding, current, succeeding} phoneme

Note that a context dependent HMM corresponds to a phoneme.

5.4.2 Decision-tree based context clustering

When we construct context dependent models taking account of many combina-
tions of the above contextual factors, we expect to be able to obtain appropriate
models. However, as contextual factors increase, their combinations also increase
exponentially. Therefore, model parameters with sufficient accuracy cannot be esti-
mated with limited training data. Furthermore, it is impossible to prepare speech
database which includes all combinations of contextual factors.

Introduction of context clustering

To overcome the above problem, we apply a decision-tree based context clustering
technique [32] to distributions for spectrum, F0 and state duration.

The decision-tree based context clustering algorithm have been extended for MSD-
HMMs in [33]. Since each of spectrum, FO and duration have its own influential
contextual factors, the distributions for spectral parameter and F0O parameter and
the state duration are clustered independently (Fig. 5.4.2).

Example of decision tree

We used phonetically balanced 450 sentences from ATR Japanese speech database
for training. Speech signals were sampled at 16 kHz and windowed by a 25-ms
Blackman window with a 5-ms shift, and then mel-cepstral coefficients were obtained
by the mel-cepstral analysis®. Feature vector consists of spectral and FO parameter
vectors. Spectral parameter vector consists of 25 mel-cepstral coefficients including
the zeroth coefficient, their delta and delta-delta coefficients. FO parameter vector
consists of log FO0, its delta and delta-delta. We used 3-state left-to-right HMMs
with single diagonal Gaussian output distributions. Decision trees for spectrum, F0
and duration models were constructed as shown in Fig. 5.4.2. The resultant trees

3The source codes of the mel-cepstral analysis/synthesis can be found in
http://kt—lab.ics.nitech.ac.jp/ tokuda/SPTK/ .
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Figure 5.5: Examples of decision trees.

for spectrum models, FO models and state duration models had 6,615, 1,877 and
201 leaves in total, respectively.

Fig. 5.4.2 shows examples of constructed decision trees for spectrum (a), FO (b) and
state duration (c). In these figures, “L_x”  “C_x” and “R_%” represent “preceding”,
“current” and “succeeding”, respectively. “Silence” represents silence of head or tail
of a sentence, or pause. Questions of breath group and accentual phrase are rep-
resented by “x_breath_x” and “x_accent_x”, respectively. “Pit_s2_x” and “dur_s2_x”
represent leaf nodes. From these figures, it is seen that spectrum models are much
affected by phonetic identity, FO models for “voiced” are much affected by accentual
phrase and part-of-speech, and FO models for “unvoiced” are clustered by a very
simple tree. With regard to state duration models, it can be seen that silence and
pause models are much affected by accentual phrase and part-of-speech, and the
other models are much affected by phonetic identity.

Through informal listening tests, we have found that the stopping rule (a minimum
frame occupancy at each leaf and a minimum gain in likelihood per splice) should be
determined appropriately in decision tree construction. An overly large tree will be
overspecialized to training data and generalize poorly. On the other hand, a overly
small tree will model the data badly. Therefore we should introduce some stopping
criterion or cross-validation method (e.g., [34]-[35]).

46



5.4.3 Context clustering using MDL principle

In this section, the MDL principle is incorporated as the stopping rule for the tree-
based clustering [36], Before explaining the use of the MDL principle for the tree-
based clustering, this section briefly introduces the principle itself.

Introduction of MDL principle

Minimum Description Length (MDL) principle is an information criterion which
has been proven to be effective in the selection of optimal probabilistic models. It
has been used to obtain a good model for data in various problems. According to
the MDL principle, the model with the minimum description length [ is selected to
be the optimal model for data ¥ = zy,---, 2y, from among probabilistic models

t=1,---,1. A description length l(z’) of model i is given as,
14) = —log Py (2) + % log N + log I (5.8)

where «; is the number of free parameters of the model 7, and 6% is the maximum
likelihood estimates for the parameters 6(i) = (95“, +++,0)) of model i. The first
term is the negative of the log likelihood for the data, and the second term represents
the complexity of the model. The third term is the description length required for
choosing model 7. As a model becomes more complex, the value of the first term
decreases and that of the second term increases. The description length [ has its
minimum at a model of appropriate complexity. Furthermore, as one can see in
Eq. (5.8), the MDL principle does not need any externally given parameters; the
optimal model for the data is automatically obtained once a set of models is given.

MDL principle for tree-based clustering

The MDL principle is incorporated to the tree-based clustering for MSD-HMM which
includes continuous density HMM. It is assumed that cluster set S which is a result
of clustering is defined by

S:{ShSQa”'aS’i)”'aSM} (59)
Then, log likelihood L is calculated as follows:

= —ZZ (ng(log(2m) + 1) + log |X,|

seS g= 1

—2logwsg) > (s, 9), (5.10)
teT(0,g)
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where g is a space index, and w;, is a weight of space g in cluster s. T'(0, g) is a set
of time ¢ which satisfies that a set of space index of observation vector mo; includes
a space index g. (s, g) is the probability of being in space g of cluster s at time ¢.
In the case of the zero-dimensional space, log |3,,| in Eq.(5.10) is equal to 0. Using
this likelihood £, a description length (DL) [ is represented by

| = ZZ ng 10g 27T —|—1)+10g|259|

seS g= 1

_21ngsg) Z '7t(379>
teT(0,9)

2ng+1>

G
-(logZZ > %(8,9)) (5.11)

s€S g=1¢€T(0,9)

l\')ll—

+ (Zszi:

If it is assumed that the description length is I/ when a cluster S; is divided two
clusters S;; and S;_, The change of description length 4/ is calculated by

o = 1'—1

-y 3k

s€{Siy,5i—} 9= 1

1
— (log |Xs4| — 2logws,)

Z Y:(s, 9)

teT(0,g)

(\V]

G
1
- > 25 (log |Xs4| — 2logws,)

se{S;} g=1
Z ”Yt S 9
teT(0,9)
¢ 1
g=1

(=EE 5 ). 512

s€S g=1teT(0,9)

If 9l < 0 then the node is devided, and if 6l > 0 then the node is not devided.
Fig. 5.4.2 shows examples of constructed decision trees constructed by using the
MDL principle.
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Chapter 6

HMM-based Text-to-Speech
Synthesis

Synthetic speech is generated by using an speech parameter generation algorithm
from HMM and a mel-cepstrum based vocoding technique. Through informal lis-
tening tests, we have confirmed that the proposed system successfully synthesizes
natural-sounding speech which resembles the speaker in the training database.

6.1 Overview

The synthesis part of the HMM-based text-to-speech synthesis system is shown in
Fig. 6.1. In the synthesis part, an arbitrarily given text to be synthesized is converted
to a context-based label sequence. Then, according to the label sequence, a sentence
HMM is constructed by concatenating context dependent HMMs. State durations
of the sentence HMM are determined so as to maximize the likelihood of the state
duration densities [31]. According to the obtained state durations, a sequence of mel-
cepstral coefficients and F0 values including voiced /unvoiced decisions is generated
from the sentence HMM by using the speech parameter generation algorithm [12].
Finally, speech is synthesized directly from the generated mel-cepstral coefficients

and FO values by the MLSA filter [16], [19].

6.2 Text analysis

The inputed text is converted a context dependent label sequence by a text analyzer.
For the TTS system, the text analyzer should have ability to extracted contextual
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Figure 6.1: The block diagram of the HMM-based TTS.
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informations listed in Section 5.4.1 from the text. Currently, some Japanese text an-
alyzer (e.g., ChaSen', MSLR?, etc.) are freely available. However, no text analyzer
has the ability to extract accentual phrase and to decide accent type of accentual
phrase. Thus, in this thesis, the inputed text is manually analyzed and converted
context dependent label sequence.

6.3 Duration determination

For a given speech length T', the goal is to obtain a state sequence q = {¢, q2, - -+, g}
which maximize

K
log P(q|A\,T) =Y log pr(d) (6.1)
k=1
under the constraint .
T=>d, (6.2)
k=1

where pi(dy) is the probability of duration dj in state k, and K is the number of
states in HMM A.

Since each duration density px(dy) is modeled by a single Gaussian distribution,
state durations {d}£_; which maximize (6.1) are given by

b = €(6)+p- (k) (6.3
p - (T—zak)) S o2(k). (6.4)
k=1 k=1

where £(k) and o?(k) are the mean and variance of the duration density of state k,
respectively.

Since p is associated with 7" in (6.4), the speaking rate can be controlled by p instead
of T. From (6.3), it can be seen that to synthesize speech with average speaking
rate, p should be set to 0, that is, T = Y&, £(k), and the speaking rate becomes
faster or slower when we set p to negative or positive value, respectively. It can also
be seen that the variance o?(k) represents “elasticity” of kth state duration.

6.4 Speech parameter generation

According to the estimated state duration, spectral and excitation parameters are
generated from a sentence HMM constructed by concatenating context dependent

Lhttp://chasen. aist-nara.ac.jp/
2http:/ /tanaka-www. cs.titech.ac.jp/pub/msir/
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HMMs. Fig. 6.2 shows spectra of natural speech and synthesized speech for a
Japanese phrase “heikiNbairitu” Fig. 6.4 shows FO pattern of natural speech and
synthesized speech for a Japanese sentence “heikiNbairituwo sageta keisekiga aru”.

6.5 Experiments

6.5.1 Effect of dynamic feature

Examples of generated spectra and F0O pattern are shown in Fig. 6.5.1 and Fig. 6.5.1,
respectively. In each figure, the parameters generated with and without dynamic
features are shown. From these figures, it can be seen that spectra and FO pattern
which approximate those of natural speech are generated by using the parameter
generation algorithm with dynamic features.

The effect of speech parameter generation with the dynamic features was evaluated
by a pair comparison test. The following four samples were compared:

e spectrum generated without dynamic features
+ FO without dynamic features

e spectrum generated with dynamic features
+ FO without dynamic features

e spectrum generated without dynamic features
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Figure 6.6: Effect of dynamic feature.

+ FO with dynamic features

e spectrum generated with dynamic features
+ FO with dynamic features

Figure 6.5.1 shows preference scores. It can be seen that in the case of using dynamic
features synthesized speech is significantly improved.

6.5.2 Automatically system training

In the proposed system, there is no need for label boundaries when appropriate
initial models are available since spectral, FO and duration models are estimated by
the the embedded training. Therefore, the system can be automatically constructed
by the following process:

1. As a initial model, speaker independent and gender dependent model is pre-
pared.

2. The target speaker dependent model is estimated by using initial model and
speech data with transcription.
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Table 6.1: Number of distribution.
‘ H Spectrum‘ FO ‘ Duration ‘

SD 942 2597 1528
GD 952 2539 1552
SI 956 2623 1765

: 48.4%

54.7%

46.9%

0 20 40 60 80 100
Preference Score(%)

Figure 6.7: Effect of difference of initial model.

We did automatic system construction tests. As a initial model, we prepared speaker
dependent model(SD), gender dependent and speaker independent model(GD), and
speaker independent model(SI). SD was trained using speech data from target male
speaker MHT. For GD, speech data from five male speakers in which target speaker
MHT did not include was used. For SI, speech data from five male and four female
speakers in which target speaker MHT did not include was used. Figure 6.1 shows
the size of the resultant model.

The difference of quality of speech synthesized by using each initial model was
evaluated by a pair comparison test. Preference scores are shown in Fig. 6.5.2.
From these figure, it is seen that there is no difference of speech quality between
initial model SD, GD and SI.

6.5.3 Speaking rate

Fig. 6.5.3 shows generated spectra for a Japanese sentence which is not included
in the training data, setting p to —0.1, 0, 0.1. Only the part corresponding to
the first phrase “/t-o-k-a-i-d-e-w-a/”, which means “in a city” in English, is shown
in this figure. From the figure, it can be seen that some parts such as stationary
parts of vowels have elastic durations, and other parts such as explosives have fixed
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Chapter 7

Improvement of Synthesized
Speech Quality

This chapter describes improvements on the excitation model of an HMM-based
text-to-speech system. In our previous work, natural sounding speech can be syn-
thesized from trained HMMs. However, it has a typical quality of “vocoded speech”
since the system uses a traditional excitation model with either a periodic impulse
train or white noise. In this thesis, in order to reduce the synthetic quality, a mixed
excitation model used in MELP is incorporated into the system. Excitation param-
eters used in mixed excitation are modeled by HMMs, and generated from HMMs
by a parameter generation algorithm in the synthesis phase. The result of a lis-
tening test shows that the mixed excitation model significantly improves quality of
synthesized speech as compared with the traditional excitation model.

7.1 Introduction of Mixed Excitation Model

In the previous work [10], natural sounding speech can be synthesized from trained
HMMs. However, synthesized speech has a typical quality of “vocoded speech”
since the HMM-based T'TS system used a traditional excitation model with either a
periodic impulse train or white noise shown in Fig. 7.1. To overcome this problem,
the excitation model should be replaced with more precise one.

For low bit rate narrowband speech coding at 2.4kbps, the mixed excitation linear
predictive (MELP) vocoder has been proposed [37]. In order to reduce the synthetic
quality and mimic the characteristics of natural human speech, this vocoder has the
following capabilities:

e mixed pulse and noise excitation
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Figure 7.1: Traditional excitation model.

e periodic or aperiodic pulses
e pulse dispersion filter

The mixed excitation is implemented using a multi-band mixing model(Fig. 7.2),
and can reduce the buzz of synthesized speech. Furthermore, aperiodic pulses and
pulse dispersion filter reduce some of the harsh or tonal sound quality of synthesized
speech. In recent years, the mixed excitation model of MELP has been applied
not only to narrowband speech coding but also to wideband speech coder [38] and
speech synthesis system [39].

In this thesis, mixed excitation model which is similar to the excitation model used
in MELP is incorporated into the TTS system. Excitation parameters, i.e., FO,
bandpass voicing strengths and Fourier magnitudes, are modeled by HMMs, and
generated from trained HMMs in synthesis phase.

7.1.1 Mixed excitation
Analysis phase

In order to realize the mixed excitation model in the system, the following excitation
parameters are extracted from speech data.

e O
e bandpass voicing strengths

e Fourier magnitudes

In bandpass voicing analysis, the speech signal is filtered into five frequency bands,
with passbands of 0-1000, 10002000, 2000-4000, 4000-6000, 6000-8000Hz [38].
Note that the TTS system deals with 16kHz sampling speech. The voicing strength
in each band is estimated using normalized correlation coefficients around the pitch
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Figure 7.3: Mixed excitation model.

lag. The correlation coefficient at delay t is defined by
N—-1
Z SnSn+t
n=0

N-1 N-1 ’
Z Snsnz SntSn+t
n=0 n=0

(7.1)

Ct =

where s,, and N represent the speech signal at sample n and the size of pitch analysis
window, respectively. The Fourier magnitudes of the first ten pitch harmonics are
measured from a residual signal obtained by inverse filtering.

Synthesis phase

A block diagram of the mixed excitation generation and speech synthesis filtering is
shown in Fig. 7.3.

The bandpass filters for pulse train and white noise are determined from generated
bandpass voicing strength. The bandpass filter for pulse train is given by the sum of
all the bandpass filter coefficients for the voiced frequency bands, while the bandpass
filter for white noise is given by the sum of the bandpass filter coefficients for the
unvoiced bands. The excitation is generated as the sum of the filtered pulse and
noise excitations. The pulse excitation is calculated from Fourier magnitudes using
an inverse DF'T of one pitch period in length. The pitch used here is adjusted by
varying 25% of its position according to the periodic/aperiodic flag decided from the
bandpass voicing strength. By the aperiodic pulses, the system mimics the erratic
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Figure 7.4: Structure of a feature vector modeled by HMM.

glottal pulses and reduces the tonal noise. The noise excitation is generated by a
uniform random number generator. The obtained pulse and noise excitations are

filtered and added together.

By exciting the MLSA filter [19], synthesized speech is generated from the mel-
cepstral coefficients, directly. Finally, the obtained speech is filtered by a pulse
dispersion filter which is a 130-th order FIR filter derived from a spectrally-flattened
triangle pulse based on a typical male pitch period. The pulse dispersion filter can

reduce some of the harsh quality of the synthesized speech.

7.1.2 Excitation parameter modeling

Feature vector

The structure of the feature vector is shown in Fig. 7.4. The feature vector consists

of spectral and excitation parameters.

Mel-cepstral coefficients including zero-th coefficient and their delta and delta-delta
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coefficients are used as spectral parameters. By using a mel-cepstral analysis tech-
nique [16] of an order of 24, mel-cepstral coefficients are obtained from speech signal
windowed by a 25-ms Blackman window with a 5-ms shift.

Excitation parameters include FO represented by log fundamental frequency (log fp),
five bandpass voicing strengths, Fourier magnitudes of the first ten pitch harmonics,
and their delta and delta-delta parameters.

Context dependent model

Feature vectors are modeled by 5-state left-to-right HMMs. Each state of an HMM
has four streams for mel-cepstrum, F0, bandpass voicing strengths and Fourier
magnitudes, respectively(Fig. 7.5). In each state, mel-cepstrum, bandpass voicing
strengths and Fourier magnitudes are modeled by single diagonal Gaussian distri-
butions, and F0 is modeled by the multi-space probability distribution [40].
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Feature vectors are modeled by context dependent HMM taking account of contex-
tual factors which affect spectral parameter and excitation parameter such as phone
identity factors, stress-related factors and locational factors. Details of the contex-
tual factors are shown in [10]. The trained context dependent HMMs are clustered
using a tree-based context clustering technique based on MDL principle [36]. Since
each of mel-cepstrum, F0O, bandpass voicing strength, Fourier magnitude and du-
ration has its own influential contextual factors, the distributions for each speech
parameter are clustered independently, where state occupation statistics used for
clustering are calculated from only the streams of mel-cepstrum and FO.

7.1.3 Excitation parameter generation

A context dependent label sequence is obtained by text analysis of input text, and a
sentence HMM is constructed by concatenating context dependent phoneme HMMs
according to the obtained label sequence. By using a speech parameter generation
algorithm [41], mel-cepstrum, F0, bandpass voicing strength and Fourier magnitude
are generated from the sentence HMM taking account of their respective dynamic
feature statistics. Speech is synthesized from the obtained spectral and excitation
parameters.

7.2 Incorporation of postfilter

Many speech coders, which include the MELP, attempted to improve synthesized
speech quality by incorporating postfilter, and succeeded it. The our TTS system
also incorporates the postfilter.

In Chapter 2, the synthesis filter D(z) was realized using the MLSA filter. In order to
realize the postfilter, first, a transfer function D(z) is defined. The transfer function
D(z) is the same as D(z) except that c(1) is forced to be zero to compensate for the
global spectral tilt. By setting c¢(1) = 0, the transfer function D(z) is written by

D(z) = exp Zl b(m)®,,(2) (7.2)

B(m) — { bm) ~2sm<M (7.3)

—ab(2) m=1

We can realize the postfilter D?(z) in the same manner as D(z), by multiplying
c¢(m) by (. The tunable parameter /3 control the amount of postfiltering.

The effect of the postfiltering is shown in Fig. 7.6 In Fig. 7.6, 3 is set to 0.5. From
the figure, it can be observed that formant is emphasized by the postfiltering.
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Figure 7.6: Effect of postfiltering(dots: before postfiltering, solid: after postfiltering
B =0.5).

7.3 Experiments

7.3.1 Excitation generation

Excitation parameters were generated from an HMM set trained using phonetically
balanced 450 sentences of ATR Japanese speech database. The resulting decision
trees for mel-cepstrum, FO, bandpass voicing strength, Fourier magnitude and state
duration models had 934, 1055, 1651, 3745 and 1016 leaves in total, respectively. A
part of each decision tree is shown in Appendix 9.2.

Examples of traditional excitation and mixed excitation are shown in Fig. 7.7, where
the pulse dispersion filter was applied to mixed excitation. From the figure, it can be
observed that the voiced fricative consonant “z” has both the periodic and aperiodic
characteristics in the mixed excitation.

7.3.2 Effect of mixed excitation

The TTS system with mixed excitation model was evaluated. We compared tra-
ditional excitation and mixed excitation by a pair comparison test. In addition,
effects of the Fourier magnitudes, aperiodic pulses and the pulse dispersion filter
were evaluated.

The following five excitation models were compared:
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Figure 7.7: Example of generated excitation for phrase “sukoshizutsu.” (top: tradi-
tional excitation bottom: mixed excitation)

TE : traditional excitation

ME : mixed excitation

FM : ME + Fourier magnitudes
AP : FM + aperiodic pulses

PD : AP + pulse dispersion filter

The model TE is the traditional excitation model which generates either periodic
pulse train or white noise. Each of models ME, FM, AP and PD is the mixed
excitation model. In the model ME, pulse train was not calculated from Fourier
magnitude, and the aperiodic pulse and the pulse dispersion filter were not applied.
In the model FM, pulse excitation was calculated from Fourier magnitude. The
model AP used aperiodic pulses, and the model PD used the pulse dispersion
filter additionally. Eight subjects tested the five kinds of synthesized speech. Eight
sentences were selected at random for each subjects from 53 sentences which were
not included in the training data. Figure 7.8 shows preference scores. It can be
seen that the mixed excitation model significantly improved the quality of synthetic
speech. Although no additional gain was obtained by using Fourier magnitudes
and aperiodic pulses, the additional use of pulse dispersion filter achieved further
improvement in speech quality.
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7.3.3 Effect of postfiltering

The effect of the postfiltering was evaluated by a pair comparison test. The following
four samples were compared:

conventional excitation model without postfiltering
(NORMAL)

conventional excitation model with postfiltering
(NORMAL+POST)

mixed excitation model without postfiltering
(MIXED)

mixed excitation model with postfiltering
(MIXED+POST)
The mixed excitation model indicates PD in Section 7.3.

Figure 7.9 shows preference scores. It can be seen that the mixed excitation model
with postfiltering significantly improved the quality of synthetic speech. Even the
conventional excitation model with postfiltering also can improve the quality.
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Chapter 8

Voice Conversion Technique:
Speaker Interpolation

Although TTS systems which synthesize speech by concatenating speech units can
synthesize speech with acceptable quality, they still cannot synthesize speech with
various voice quality such as speaker individualities and emotions. To obtain var-
ious voice quality in text-to-speech synthesis systems based on the selection and
concatenation of acoustical units, large amounts of speech data is required. How-
ever, it is difficult to collect, segment, and store these data. In this chapter, to
synthesize speech with various voice characteristics, a T'TS system based on speaker
interpolation is proposed.

8.1 Overview

The proposed system[42] synthesizes speech with untrained speaker’s voice quality
by interpolating HMM parameters among some representative speakers’ HMM sets.
The idea of using speaker interpolation has been applied to voice conversion[43].
The proposed method differs from it in that each speech unit is modeled by an
HMM, accordingly mathematically-well-defined statistical distance measures can be
used for interpolating HMMs. As a result, the system can synthesize speech with
various voice quality without large speech database in synthesis phase.

A block diagram of the TTS system based on speaker interpolation is shown in
Fig. 8.1, which is almost equivalent to the previously proposed system except that
multiple speaker’s HMM sets are trained and a new speaker’s HMM set is generated
by interpolation among them. The procedure can be summarized as follows:
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Figure 8.1: Block diagram of speech synthesis system with speaker interpolaiton.
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1. Training representative HMM sets

(a) Select several representative speakers S, Ss, ..., Sy from speech database.

(b) Obtain mel-cepstral coefficients from speech of the representative speak-
ers by mel-cepstral analysis.

(¢) Train phoneme HMM sets Ay, Ao, ..., Ay for Sy, S, ..., Sn, respec-
tively, using mel-cepstral coefficients, and their deltas and delta-deltas.

2. Interpolation among representative HMM sets

(a) Generate a new phoneme HMM set A by interpolating among the repre-
sentative speakers’ phoneme HMM sets A, As, ..., Ay with an arbitrary
interpolation ratio aq, as, ..., ay based on a method described in the
next section.

3. Speech synthesis from interpolated HMM

(a) Convert the text to be synthesized into a phoneme sequence, and con-
catenate the interpolated phoneme HMMs according to the phoneme se-
quence.

(b) Generate mel-cepstral coefficients from the sentence HMM by using speech
parameter generation algorithm.

(¢) Synthesize speech from the generated mel-cepstral coefficients by using
the MLSA (Mel Log Spectral Approximation) filter.

8.2 Speaker Interpolation

Figure 8.2 shows a space which represents speaker individuality. Representative
speakers S, Sa, ..., Sy are modeled by HMMs, A, Ao, ..., Ay, respectively. We
assume that representative speaker’s HMMs have the same topology (distributions
could be tied). Under this assumption, interpolation among HMMs is equivalent
to interpolation among output probability densities of corresponding states when
state-transition probabilities are ignored. If we assume that each HMM state has a
single Gaussian output probability density, the problem is reduced to interpolation
among N Gaussian pdfs, pi(0) = N(o; pu,,Uy), k=1,2,..., N, where u, and
U, denote mean vector and covariance matrix, respectively, and o is the speech
parameter vector.

We consider three methods to interpolate among pdfs as follows:

(a) When we define the interpolated pdf p(o) = N(o; u,U) as pdf of random
variable

N
0= a0, (8.1)
k=1
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Figure 8.2: A space of speaker individuality modeled by HMMs.

where 3% | ar = 1, the mean g and variance U is calculated as follows:

N

po= Y am, (8.2)
N

U = ) aqiU. (8.3)
k=1

(b) We assume that mean g, and covariance Uy are trained by using -, feature
vectors of speaker k. If the interpolated pdf p is trained by using feature
vectors of N representative speakers, this pdf p is determined as

N
Z%uk N

N
= Z U + ppy,) — pp/ (8.5)

respectively, where v = fo:l Ve and ag = i/

72



(c) We assume that the similarity between the interpolated speaker S and each rep-
resentative speaker S can be measured by Kullback information measure be-
tween p and pg. Then, for given pdfs py, po, ..., py and weights aq, as, ..., ay,
consider a problem to obtain pdf p which minimizes a cost function

e=>_ apl(p, pr), (8.6)
k=1

that is, we can determine the interpolated pdf p(o) = N (o; u,U) by mini-
mizing ¢ with respect to p and U, where the Kullback information measure
can be written as

I(p, pr)
— /_O:ON(O; w,U) log /\/'N(’—(()(');u’: gi) do
_ 1 Ukl
5{ log W +
e (U (= ) — ) + U] + 1, (37)

As a result, p and U are determined by
N -1/ N
u = <Z akUk1> (Z akUklp,k>, (8.8)
k=1 k=1

-1

U = (gjlakU,j) , (8.9)

respectively. The derivation of (8), (9) is shown in Appendix A.

8.3 Simulation

Table 8.1: Setting for simulating Japanese vowel “a”

Formant | Center frequency (standard deviation) | Bandwidth
D1 f1 750 Hz (100 Hz) 50 Hz
(male) £2 1100 Hz (130 Hz) 60 Hz
D2 f1 1050 Hz (100 Hz) 50 Hz
(female) £2 1500 Hz (130 Hz) 60 Hz

In order to check whether these methods generate interpolated distribution appro-
priately, we evaluated three methods based on simple simulations to avoid a time-
consuming subjective evaluation.
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Figure 8.4: Comparison between method (a), (b) and (c) with regard to interpolation
between two Gaussian distributions p; and p, with interpolation ratios A: (ai, as) =
(1, 0), B: (a1, a2) = (0.75, 0.25), C: (a1, az) = (0.5, 0.5), D: (a1, az) = (0.25, 0.75),
E: (a1, a2) = (0, 1).

Fig. 8.3 shows Gaussian distributions generated by interpolating between Gaussian
distributions p; and p, with two-dimensional diagonal covariances. In this figure,
each ellipse represents the contour of a Gaussian distribution, and each dot repre-
sents the mean vector of the distribution. From the figure, it can be seen that in
methods (a) and (b) the interpolated mean vector is determined irrespective of co-
variances of representative distributions p; and p,. On the other hand, the method
(c) can interpolate between two distributions appropriately in the sense that the
interpolated distribution p reflects the statistical information, i.e., covariances of p;
and ps.

By using three interpolation methods, we interpolated between multi-dimensional
Gaussian distributions p; and p,. Each distribution is calculated by using 1024
cepstral coefficient vectors which simulate Japanese vowel “a” uttered by male or
female. Center frequencies, their standard deviations and bandwidths of the first
and second formants were determined as shown in Tab. 8.1. Center frequencies are
determined referring to Tab. 3.1 in [44] which shows ranges of male’s and female’s
formant frequency. Standard deviations of center frequencies are estimated from
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Tab. 3-5(a)(b) in [45], which shows changes in formant frequency of Japanese vowels
according to difference of the preceding consonant, Bandwidths are estimated from
Fig. 5.32(a) and Fig. 5.33(b) in [46], which show formant bandwidths and difference
of male’s and female’s first formant bandwidth, respectively. Fig. 8.4 shows spectra
which correspond to mean vectors of interpolated Gaussian distributions. It can be
seen that the formant structure of spectra interpolated by the method (a) and (b)
are collapsed. On the other hand, the spectra interpolated by the method (c) keep
the formant structure. These results suggest that the method (c) is most appropriate
in the three methods for interpolating among HMMs which model speech spectra,
and we choose the method (c) for the subjective evaluation in the next section.

8.4 Experiments

By analyzing the result of the subjective evaluation of similarity using Hayashi’s
fourth method of quantification [47], we investigated whether the quality of synthe-
sized speech from the interpolated HMM set is in between representative speakers’.
In these experiments, we use two representative speakers, since when we use many
speakers, combinations of stimuli increase exponentially in similarity test.

We used phonetically balanced 503 sentences from ATR Japanese speech database
for training. Speech signals were sampled at 10 kHz and windowed by a 25.6 ms
Hamming window with a 5 ms shift, and then mel-cepstral coefficients were obtained
by mel-cepstral analysis. The feature vectors consisted of 16 mel-cepstral coefficients
including the Oth coefficient, and their delta and delta-delta coefficients. Note that
the Oth coefficient corresponds to logarithm of the signal gain. We used 5-state
left-to-right triphone models with single Gaussian diagonal output distributions.
Decision-tree based model clustering was applied to each set of triphone models,
and the resultant set of tied triphone models had approximately 2,600 distributions.

We trained two HMM sets using speech data from a male speaker MHT and a female
speaker FKN, respectively. By using the speech parameter generation algorithm,
five different types of speech were synthesized from five HMM sets obtained by
setting the interpolation ratio as (amuT, arkn) = (1, 0), (0.75, 0.25), (0.5, 0.5),
(0.25, 0.75), (0, 1) (these sound files can be found in http://kt—lab.ics.nitech.ac.jp/
“yossie/demo/speaker_inter.html). The MLSA filter was excited by pulse train or
white noise generated according to FO contours. As the FO contour for synthetic
speech, we used a FO contour obtained by linear interpolation between MHT’s and
FKN’s FO contours extracted from natural speech at a ratio of 1 : 1, where a one-
to-one correspondence between MHT’s and FKN’s FO contour was given by Viterbi
alignment using spectral information. In each state, the time axis was linearly
expanded or contracted. FO contours were represented by logarithm of the frequency.
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Figure 8.5: Generated spectra of the sentence “/n-i-m-o-ts-u/”.

To observe only a change of spectrum, FO contour was fixed for each sentence.

8.4.1 Generated Spectra

Fig. 8.5 shows spectra of a Japanese sentence “/n-i-m-o-ts-u/” generated from the
triphone HMM sets. From the figure, it can be seen that spectra change smoothly
from speaker MHT’s to speaker FKN’s according to the interpolation ratio.

8.4.2 Experiment of Similarity

In this experiment, two sentences (Appendix B), which were not included in the
training data, were synthesized. Subjects were eight males. Stimuli consisted of two
samples in five utterances which were synthesized with different interpolation ratios.
Subjects were asked to rate the similarity of each pair into five categories ranging
from “similar” to “dissimilar”. From the results, we placed each sample in a space
according to the similarities between the samples by using Hayashi’s fourth method
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Figure 8.6: Subjective distance between samples.

of quantification.

Fig. 8.6 shows the relative similarity distance between stimuli. It is observed that
the first axis roughly corresponds to gender. From this figure, it is seen that a pair of
samples, whose interpolation ratios were close to each other, were placed closely on a
two-dimensional space. This indicates that the voice quality of interpolated speaker
changes smoothly between those of two representative speakers if interpolation ratio
is linearly changed.

8.5 Discussion

In this thesis, we described an approach to voice quality conversion for an HMM-
based text-to-speech synthesis system by interpolation among HMMs of represen-
tative speakers. As a result, the system can synthesize speech with various voice
quality without large speech database in synthesis phase. From the results of exper-
iments, we have seen that the quality of synthesized speech from the interpolated
HMM set change smoothly from one male speaker’s to the other female speaker’s
according to the interpolation ratio.

In this thesis, although we choose the method (c) based on the simulation, the
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superiority of the method (c) should also be confirmed by the subjective evaluation.
Although the proposed method can be applied to multiple representative speakers,
the subjective evaluation was performed for two representative speakers. Thus, the
subjective evaluation for the interpolation among multiple speakers is also our future
work. We expect that the emotion (e.g., anger, sadness, joy) interpolation might be
possible by replacing HMMSs of representative speakers with those of representative
emotions.
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Chapter 9

Conclusions

In this chapter, we summarize the contributions of the thesis and suggest some
direction for future work.

9.1 Original contribution revisited

The original contributions are summarized as follows. This summary is corresponded
to the “original contribution” list given at the start of this thesis (Section 1.3)

e Speech parameter generation using multi-mixture HMM.
In the previous works, single-mixture HMMs were used. However, the formant
structure of spectrum corresponding to each mean vector might be vague since
mean vector is the average of different speech spectra. In chapter 4, we pro-
posed a parameter generation algorithm using multi-mixture HMMs. From the
experimental result, we confirmed that the formant structure of the generated
spectra get clearer with increasing mixtures.

e Duration modeling for the HMM-based TTS system.
In chapter 5, we proposed duration modeling for HMM-based TTS system.
Duration models are constructed taking account of contextual factors that af-
fect durations. From informal listening tests, we found that synthetic speech
had a good quality with natural timing. Furthermore, we confirmed that syn-
thetic speech could keep natural timing even if its speaking rate was changed
in some degree.

e Simultaneous modeling of spectrum, FO and duration.
In chapter 5, we described an HMM-based speech synthesis system in which
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spectrum, FO and state duration are modeled simultaneously in a unified
framework of HMM. As a result, it is possible that statistical voice conver-
sion techniques (e.g., speaker adaptation technique, speaker interpolation tech-
nique) are applied to the proposed TTS system.

Training of context dependent HMM using MDL principle.

In chapter 5, the distributions for spectral parameter, FO parameter and the
state duration are clustered independently by using a decision-tree based con-
text clustering technique based on the MDL principle. By the MDL principle,
decision tree is set appropriate size taking account of amount of data.

FO parameter generation using dynamic features.

We confirmed the effect of dynamic feature in the FO parameter generation in
chapter 6. By taking account of dynamic features, very smooth and natural F0
pattern can be generated. From the listening test, synthesized speech, whose
spectra and FO pattern are generated with dynamic features, is improved than
speech synthesized without dynamic features.

Automatic training of the HMM-based TTS system.

The HMM-based TTS system can be constructed automatically using appro-
priate initial model and speech data without label boundary information. In
chapter 6, actually we did automatic system construction, and confirmed that
synthesized speech has the same quality with the case of using speech data
with label boundary information.

Improvement quality of synthesized speech by incorporating mixed
excitation model and postfilter into the HMM-based TTS system.
There are many approaches to the improvement of the speech quality for the
HMM-based TTS system. As one of approaches, we tried to incorporate the
mixed excitation model and the postfilter to the system in chapter 7. As a
result, the quality of the synthesized speech could be significantly improved.

Voice conversion using speaker interpolation technique.

For the purpose of synthesizing speech with various voice characteristics such
as speaker individualities and emotions, we proposed the TTS system based
on speaker interpolation in chapter 8. The proposed system synthesizes speech
with untrained speaker’s voice quality by interpolating HMM parameters among
some representative speakers” HMM sets. Listening tests show that the pro-
posed algorithm successfully interpolates between representative speakers in
the case where two representative HMM sets are trained by a male and a fe-
male speakers’ speech data, respectively; the quality of synthesized speech is
in between the male and female speakers’, and can be gradually changed from
one’s to the other’s according to interpolation ratio.
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9.2 Future works

There are some works as far the proposed TTS system. For example, The following
works are considered:

e Improvement of synthesized speech quality.

In Chapter 7, the mixed excitation and postfilter were incorporated to the
system, and they could improve the speech quality. However, this approach
is used in the field of speech coding in which it is purpose that high quality
speech are obtained with small amount of bit rate. It is considered that there
is some approaches with a large number of speech parameters to improvement
of the speech quality. For example, STRAIGHT[48] is a high-quality analysis-
synthesis method and offers high flexibility in parameter manipulation with
no further degradation. If analysis-synthesis method such as STRAIGHT can
be incorporated to the our TTS system, it is considered that the synthesized
speech quality is improved.

e Emotional speech synthesis In Chapter 8, we could change speaker in-
dividualities of the synthesized speech using speaker interpolation technique.
Further, we expect that the emotion (e.g., anger, sadness, joy) interpolation
might be possible by replacing HMMs of representative speakers with those of
representative emotions.
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Appendix A

Examples of decision trees
constructed by using the MDL
principle.
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—@ C_voiced (phone)

no

C_fricative (phone)

yes yes

mora <= 11 (mora)

yes yes

L_"a" (phone)
C_"ts|ch" (phone)

C_"h" (phone)

no
C_palate (phone)
yes

R_"alulo" (phone)

C_vowel (phone)

no
C_"N" (phone)

o C_"ky" (phone)
L_"ile" (phone)
C_"ile" (phone)
C_"a" (phone)

C_"iju" (phone)

for state 1

—& C_silence (phone)

no

C_voiced (phone)

C_plosive (phone)
yes
C_"r|z|s|ts|t|d[n|N" (phone)
C_palate (phone)

C_"a" (phone)

C_"e|o" (phone)

R_silence (phone)

sentence_length <= 61 (sentence)

LEAFNODE1

LEAFNODE2

for state 4

mora <= 11 (mora)

yes

C_vowel (phone)

no

for state 2

—@ R_voiced (phone)

no

—=@ C_voiced (phone)

no

C_pause (phone)

C_plosive (phone)
no

C_"N" (phone)
no

C_"a" (phone)

LEAFNODE1

LEAFNODE2

C_nasal (phone)

R_"r|z|s|ts|t|d|n|N" (phone)

C_"0" (phone)

L_"wlf|p|b|m" (phone)

—@ C_voiced (phone)

no

C_silence (phone)

yes
C_plosive (phone)
yes
C_"s" (phone)

C_palate (phone)

C_pause (phone)

no

C_"cl" (phone) LEAFNODE1
yes
C_palate (phone) C_"ile" (phone)
C_"a" (phone)
no
C_"0" (phone)

no
C_nasal (phone)

R_silence (phone)
R_pause (phone)
R_accentual_phrase_length

<= 13 (accent)
C_accent_type == 0 (accent)

for state 3

R_silence (phone)

C_voiced (phone)
yes
L_part_of_speech_ID ==2
(part of speech)
C_"alulo" (phone)

C_"a" (phone)
C_"alo" (phone)

L_"wlf|p|b|m" (phone)

C_voiced (phone)

C_silence (phone)
yes
C_"r|z|s|ts|t|/d|n|N" (phone)

R_vowel (phone)

C_palate (phone)

no
R_vowel (phone)
yes

C_"y" (phone)

for state 5

Figure A.1: Examples of decision trees for mel-cepstrum.
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—@ C_pause (phone)
no

C_voiced (phone)

yes
C_unvoiced_vowel (phone)
yes
C_"h" (phone)

R_voiced (phone)

C_"ky" (phone)
no
R_silence (phone)
yes
LEAFNODE2

—® LEAFNODE1

for state 1

—@ C_pause (phone)
no

C_"cl" (phone)

yes

—® LEAFNODE1

for state 4

C_voiced (phone)
C_unvoiced_vowel (phone)
R_silence (phone)

LEAFNODE2

—=@ C_voiced (phone)

no

C_unvoiced_vowel (phone)

yes
C_"h" (phone)
yes
LEAFNODE1

LEAFNODE2
R_silence (phone)

no
R_voiced (phone)

yes
C_part_of_speech_ID == 12
(part of speech)
C_vowel (phone)
no
C_"N" (phone)
yes no
C_"z" (phone)

accent_type - mora <= 0
(mora)

R_silence (phone)

L_accent_pause (accent)

L_"r* (phone)

for state 2

—@ R_voiced (phone)

no

R_silence (phone)

yes

C_voiced (phone)

yes

no

yes

for state 5

L_"ch" (phone)

mora <= 8 (mora)

——@ C_"t" (phone)

no

C_voiced (phone)

yes
C_unvoiced_vowel (phone)
yes
C_"h" (phone)

R_unvoiced_plosive (phone)

C_vowel (phone)

no
C_"ky" (phone)
yes
R_silence (phone)

mora <= 3 (mora)

LEAFNODE1

LEAFNODE2

for state 3

R_fricative (phone)
C_"i" (phone)

mora <= 9 (mora)

C_"i" (phone)

LEAFNODE1

R_vowel (phone)
C_"sh" (phone)

R_accentual_phrase_length <= 13

(accent)

C_"i" (phone)

mora <= 2 (phone)

Figure A.2: Examples of decision trees for FO.
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—@ C_voiced (phone)
no

C_fricative (phone)
no

yes
C_"ts|ch” (phone)

no
C_unvoiced_vowel (phone)

LEAFNODE1

L_silence (phone)

no
C_"r|z|s|ts|t|d|n|N" (phone)
yes

LEAFNODE2

C_vowel (phone)
no

C_"N" (phone)
no
C_nasal (phone)
R_palate (phone)
L_voiced (phone)

L_silence (phone)

R_silence (phone)

for state 1

— C_voiced (phone)

no

yes

no

yes

R_pause (phone)

C_"a" (phone)
no

yes

for state 4

accent_type - mora <= 9 (mora)
L_breath_group_length <= 35
R_voiced (phone)
R_voiced (phone)
C_plosive (phone)
C_unvoiced_vowel (phone)

C_"r|z|s|ts|t|d|n|N" (phone)

C_fricative (phone)
C_plosive (phone)

mora <= 1 (mora)

C_"ile" (phone)

L_unvoiced_plosive (phone)

—¢ C_vowel (phone)

no

C_voiced (phone)

accent_type - more <= 9 (mora)
yes
sentence_length <= 49
(sentence)
C_fricative (phone)

C_"N" (phone)
no

C_nasal (phone)
yes

C_accent_type == 0 (accent)

L_voiced (phone)
no

C_"i|u" (phone)
no
R_accentual_phrase_length

<= 13 (accent)
R_u (phone)

R_silence (phone)

no
C_"a" (phone)
yes

L_"r" (phone)

for state 2

—@ C_voiced (phone)
no

R_voiced (phone)

(breath group) yes

no

yes

R_vowel (phone)

no

yes

for state 5

C_silence (phone)

C_"sh" (phone)

R_voiced (phone)

R_"N" (phone)

C_palate (phone)

—@ C_vowel (phone)
no

C_voiced (phone)
no

yes
C_plosive (phone)

no
C_silence (phone)

C_"r|z|s|ts|t|/d|n|N" (phone)

C_nasal (phone)

no
C_"y" (phone)
yes

C_"N" (phone)

R_silence (phone)
no

R_voiced (phone)
no
C_"a" (phone)
L_voiced (phone)
C_part_of_speech_ID == 36

(part of speech)
C_"0" (phone)

accent_type - mora <= 1
(accent)

for state 3

C_unvoiced_vowel (phone)

L_conjugation_form_ID == 2
(part of speech)
R_fricative (phone)

R_vowel (phone)

R_fricative (phone)

C_vowel (phone)

C_semivowel (phone)

Figure A.3: Examples of decision trees for bandpass voicing strength.
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—q

yes

 |_accentual_phrase_length <= 13 (accent) —

no
mora <= 8 (mora)
yes
C_breath_group_length <= 18
(breath group)
R_"d" (phone)

yes yes

R_breath_group_length <= 10

(breath group)
LEAFNODE1

C_voiced (phone)
no

C_fricative (phone)
no
sentence_length <= 59
(sentence)
L_breath_group_length <= 21

(breath group)
C_"ky" (phone)

L_breath_group_length <= 23

(breath group)
L_breath_group_length <= 21
(breath group)
for state 1
—

® C_silence (phone)
no

L_accentual_phrase_length <= 13
(accent)
mora <= 6 (mora)

yes

mora <= 8 (mora)

LEAFNODE2

C_voiced (phone)

C_"ts" (phone)

C_breath_group_location
<= 3 (breath group)

L_accentual_phrase_length <= 11
no (accent)

LEAFNODE1
yes

R_conjugation_type_ID ==
no (part of speech)
R_"ilu" (phone)
yes
L_accent_type <=3

(accent)

for state 4

®» C_voiced (phone)
no

L_accent_type <=9 (accent)

L_part_of_speech_ID == 17
(part of speech)
LEAFNODE1

L_voiced (phone)

C_"ts|ch" (phone)
no
C_"sh" (phone)
yes

sentence_length <= 59

(sentence)
L_accentual_phrase_length <= 13
no (accent)

mora <= 8 (mora)
no
R_breath_group_length
<= 10 (breath group)
LEAFNODE2

L_breath_group_length <= 24

(breath group)
C_breath_group_length
<= 8 (breath group)

C_"h" (phone)
for state 2
—q

yes

yes

yes

no

yes

mora <= 6 (mora)

LEAFNODE1

C_voiced (phone)

—@ L_accentual_phrase_length <= 13 (phone)

no

C_part_of_speech_ID == 15
no (part of speech)
R_silence (phone)

yes

yes

C_"w" (phone)
mora <= 8 (mora)

mora <= 8 (mora)
no
R_breath_group_length
<= 10 (breath group)
LEAFNODE1

yes

C_voiced (phone)
no
C_plosive (phone)
no .
C_unvoiced_vowel (phone)

L_part_of_speech_ID==9
(part of speech)
C_fricative (phone)

L_breath_group_length
<= 23 (breath group)

L_breath_group_length
<= 18 (breath group)

for state 3

® |_accentual_phrase_length <= 13 (accent)
no

C_breath_group_length <= 22

(breath group)

LEAFNODE2

mora <= 8 (mora)

C_silence (phone)
C_"cl" (phone)

L_breath_group_length
<= 22 (breath group)
L_breath_group_length <= 23
(breath group)
C_breath_group_length
<=7 (breath group)
C_breath_group_location

<= 3 (breath group)

for state 5

Figure A.4: Examples of decision trees for Fourier magnitude.
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—@ C_silence (phone)

no

yes

yes

yes

no

—® R_silence (phone)

—® C_"r" (phone)

yes

no
—® C_unvoiced_plosive

(phone)
—® R_"a" (phone)

—® R_pause (phone)

yes

no

no
—® L_vowel (phone)

—® C_accent_type ==0
(accent)

—® R_accentural_phrase_length <= 13

(accent)

—® L_"iju" (phone)

yes

no
—® L_accentual_phrase_length

<=5 (accent)
—® LEAFNODE1

—® C_breath_group_location <=6

yes

no (breath group)
—® R_"by" (phone)

—® | _"e|o" (phone)

Figure A.5: Examples of decision trees for duration.
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