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ABSTRACT

This paper derives a speech parameter generation algorithm for
HMM-based speech synthesis, in which speech parameter sequence
is generated from HMMs whose observation vector consists of
spectral parameter vector and its dynamic feature vectors. In the
algorithm, we assume that the state sequence (state and mixture se-
quence for the multi-mixture case) or a part of the state sequence
is unobservable (i.e., hidden or latent). As a result, the algorithm
iterates the forward-backward algorithm and the parameter gener-
ation algorithm for the case where state sequence is given. Experi-
mental results show that by using the algorithm, we can reproduce
clear formant structure from multi-mixture HMMs as compared
with that produced from single-mixture HMMs.

1. INTRODUCTION

The increasing availability of large speech databases makes it pos-
sible to construct speech synthesis systems, which are referred to
as data-driven or corpus-based approach, by applying statistical
learning algorithms. These systems, which can be automatically
trained, not only generate natural and high quality synthetic speech
but also can reproduce voice characteristics of the original speaker.

For constructing such a system, the use of hidden Markov
models (HMMs) has arisen largely. HMMs have successfully been
applied to modeling the sequence of speech spectra in speech recog-
nition systems, and the performance of HMM-based speech recog-
nition systems have been improved by techniques which utilize the
flexibility of HMMs: context-dependent modeling, dynamic fea-
ture parameters, mixtures of Gaussian densities, tying mechanism,
speaker and environment adaptation techniques. HMM-based ap-
proaches to speech synthesis can be categorized as follows:

1. Transcription and segmentation of speech database [1].

2. Construction of inventory of speech segments [2], [3].

3. Run-time selection of multiple instances of speech segments
[4], [5].

4. Speech synthesis from HMMs themselves [6]–[9].

In approaches 1–3, by using a waveform concatenation algorithm,
e.g., PSOLA algorithm, a high quality synthetic speech could be
produced. However, to obtain various voice characteristics, large
amounts of speech data are necessary, and it is difficult to collect,
segment, and store these data. On the other hand, in approach 4,
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voice characteristics of synthetic speech can be changed by trans-
forming HMM parameters appropriately. From this point of view,
we have proposed parameter generation algorithms [10], [11] for
HMM-based speech synthesis, and constructed a speech synthesis
system [8], [9]. Actually, we have shown that we can change voice
characteristics of synthetic speech by applying a speaker adapta-
tion technique [12], [13] or a speaker interpolation technique [14].
The main feature of the system is the use of dynamic feature: by
inclusion of dynamic coefficients in the feature vector, the dynamic
coefficients of the speech parameter sequence generated in synthe-
sis are constrained to be realistic, as defined by the parameters of
the HMMs.

This paper describes algorithms for speech parameter genera-
tion from HMMs. In the previously proposed algorithms [10], [11]
for speech parameter generation, state sequence is assumed to be
given, or determined based on a maximum likelihood criterion. In
this paper, we derive a new algorithm in which we assume that the
state sequence (state and mixture sequence for the multi-mixture
case) or a part of the state sequence is unobservable (i.e., hidden
or latent), and show examples of speech spectra generated by the
proposed algorithm.

The rest of this paper is organized as follows. Section 2 sum-
marizes the previously proposed algorithms for speech parameter
generation, and derives a new algorithm. Experimental results are
shown in Section 3. Concluding remarks are presented in the final
section.

2. SPEECH PARAMETER GENERATION BASED ON
MAXIMUM LIKELIHOOD CRITERION

For a given continuous mixture HMM λ, we derive an algorithm
for determining speech parameter vector sequence
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[
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(1)

in such a way that

P (O|λ) =
∑

all Q

P (O, Q|λ) (2)

is maximized with respect to O, where

Q = {(q1, i1), (q2, i2), . . . , (qT , iT )} (3)

is the state and mixture sequence, i.e., (q, i) indicates the i-th mix-
ture of state q. We assume that the speech parameter vector ot con-
sists of the static feature vector ct = [ct(1), ct(2), . . . , ct(M)]�



(e.g., cepstral coefficients) and dynamic feature vectors ∆ct, ∆2ct

(e.g., delta and delta-delta cepstral coefficients, respectively), that
is, ot = [c�

t , ∆c�
t , ∆2c�

t ]�, where the dynamic feature vectors
are calculated by
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L
(1)
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(1)
−

w(1)(τ)ct+τ (4)

∆2ct =

L
(2)
+∑

τ=−L
(2)
−

w(2)(τ)ct+τ . (5)

We have derived algorithms [10], [11] for solving the follow-
ing problems:

Case 1. For given λ and Q, maximize P (O|Q, λ) with respect
to O under the conditions (4), (5).

Case 2. For a given λ, maximize P (O, Q|λ) with respect to Q
and O under the conditions (4), (5).

In this section, we will review the above algorithms and derive an
algorithm for the problem:

Case 3. For a given λ, maximize P (O|λ) with respect to O un-
der the conditions (4), (5).

2.1. Case 1: Maximizing P (O|Q, λ) with respect to O

First, consider maximizing P (O|Q, λ) with respect to O for a
fixed state and mixture sequence Q. The logarithm of P (O|Q, λ)
can be written as

log P (O|Q, λ) = −1

2
O�U−1O + O�U−1M + K (6)

where
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]�
(8)

µqt, it
and U qt, it are the 3M ×1 mean vector and the 3M ×3M

covariance matrix, respectively, associated with it-th mixture of
state qt, and the constant K is independent of O.

It is obvious that P (O|Q, λ) is maximized when O = M
without the conditions (4), (5), that is, the speech parameter vector
sequence becomes a sequence of the mean vectors. Conditions (4),
(5) can be arranged in a matrix form:

O = W C (9)

where

C = [c1, c2, . . . , cT ]� (10)

W = [w1, w2, . . . , wT ]� (11)
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, n = 0, 1, 2 (13)

L
(0)
− = L

(0)
+ = 0, and w(0)(0) = 1. Under the condition (9),

maximizing P (O|Q, λ) with respect to O is equivalent to that
with respect to C . By setting

∂ log P (W C |Q, λ)

∂C
= 0, (14)

we obtain a set of equations

W �U−1W C = W �U−1M�. (15)

For direct solution of (15), we need O(T 3M3) operations1because
W �U−1W is a TM×TM matrix. By utilizing the special struc-
ture of W �U−1W , (15) can be solved by the Cholesky decom-
position or the QR decomposition with O(TM3L2) operations2,
where L = maxn∈{1,2},s∈{−,+} L

(n)
s . Equation (15) can also be

solved by an algorithm derived in [10], [11], which can operate in
a time-recursive manner [16].

2.2. Case 2: Maximizing P (O, Q|λ) with respect to O and Q

This problem can be solved by evaluating maxC P (O, Q|λ) =
maxC P (O|Q, λ)P (Q|λ) for all Q. However, it is impractical
because there are too many combinations of Q. We have devel-
oped a fast algorithm for searching for the optimal or sub-optimal
state sequence keeping C optimal in the sense that P (O|Q, λ) is
maximized with respect to C [10], [11].

To control temporal structure of speech parameter sequence
appropriately, HMMs should incorporate state duration densities.
The probability P (O, Q|λ) can be written as P (O, Q|λ) =
P (O, i|q, λ)P (q|λ), where q = {q1, q2, . . . , qT }, i = {i1, i2,
. . . , iT }, and the state duration probability P (q|λ) is given by

log P (q|λ) =

N∑
n=1

log pqn(dqn) (16)

where the total number of states which have been visited during
T frames is N , and pqn(dqn) is the probability of dqn consecu-
tive observations in state qn. If we determine the state sequence q
only by P (q|λ) independently of O, maximizing P (O, Q|λ) =
P (O, i|q, λ)P (q|λ) with respect to O and Q is equivalent to
maximizing P (O, i|q, λ) with respect to O and i. Furthermore, if
we assume that state output probabilities are single-Gaussian, i is
unique. Therefore, the solution is obtained by solving (15) in the
same way as the Case 1.

2.3. Case 3: Maximizing P (O|λ) with respect to O

We derive an algorithm based on an EM algorithm, which find
a critical point of the likelihood function P (O|λ). An auxiliary
function of current parameter vector sequence O and new param-
eter vector sequence O′ is defined by

Q(O, O′) =
∑
all Q

P (O, Q|λ) log P (O′, Q|λ). (17)

1When Uq,i is diagonal, it is reduced to O(T 3M) since each of the
M -dimensions can be calculated independently.

2When Uq,i is diagonal, it is reduced to O(TML2). Furthermore,

when L
(1)
− = −1, L

(1)
+ = 0, and w(2)(i) ≡ 0, it is reduced to O(TM)

as described in [15].
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Figure 1: Generated spectra for a sentence fragment “kiNzokuhiroo.”

It can be shown that by substituting O′ which maximizes Q(O, O′)
for O, the likelihood increases unless O is a critical point of the
likelihood. Equation (17) can be written as

Q(O, O′) = P (O|λ)
{
−1

2
O′�U−1O′ + O′�U−1M + K

}

(18)
where
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U−1
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T

]
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�
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U−1
t µt =

∑
q,i

γt(q, i) U−1
q,i µq,i (22)

and the constant K is independent of O′. The occupancy proba-
bility γt(q, i) defined by

γt(q, i) = P (qt = (q, i)|O, λ) (23)

can be calculated with the forward-backward inductive procedure.
Under the condition O′ = W C ′, C ′ which maximizes Q(O, O′)
is given by the following set of equations:

W �U−1W C ′ = W �U−1M . (24)

The above set of equations has the same form as (15). Accordingly,
it can be solved by the algorithm for solving (15).

The whole procedure is summarized as follows:

Step 0. Choose an initial parameter vector sequence C .

Step 1. Calculate γt(q, i) with the forward-backward algorithm.

Step 2. Calculate U−1 and U−1M by (19)–(22), and solve (24).

Step 3. Set C = C ′. If a certain convergence condition is satis-
fied, stop; otherwise, goto Step 1.

From the same reason as Case 2, HMMs should incorporate
state duration densities. If we determine the state sequence q only
by P (q|λ) independently of O in a manner similar to the previous
section, only the mixture sequence i is assumed to be unobserv-
able3. Further, we can also assume that Q is unobservable but
phoneme or syllable durations are given.

3. EXAMPLE

We used phonetically balanced 450 sentences from ATR Japanese
speech database for training. Speech signal were sampled at 16
kHz and windowed by a 25.6-ms Blackman window with a 5-
ms shift, and then mel-cepstral coefficients were obtained by a
mel-cepstral analysis technique [18]. Feature vector consists of
25 mel-cepstral coefficients including the zeroth coefficient, their
delta and delta-delta coefficients. We used 5-state left-to-right
HMMs. Decision-tree based state clustering [19] was applied to
the context-dependent phoneme model set, and the resultant HMM
set has approximately 900 states. We assume that the state and
mixture sequence is unobservable but phoneme durations are given
from phoneme duration densities in a manner similar to [20]. It
has found that a few iterations are sufficient for convergence of the

3For this problem, an algorithm based on a direct search has also been
proposed in [17].
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Figure 2: Spectra obtained from 1-mixture HMMs and 8-mixture
HMMs.

proposed algorithm. Fig. 1 shows generated spectra for a Japanese
sentence fragment “kiNzokuhiroo” taken from a sentence which is
not included in the training data. Fig. 2 compares two spectra ob-
tained from single-mixure HMMs and 8-mixture HMMs, respec-
tively, for the same temporal position of the sentence fragment.

It is seen from Fig. 1 and Fig. 2 that with increasing mixtures,
the formant structure of the generated spectra get clearer. From
informal listening of the synthetic speech, it has been observed
that the quality of the synthetic speech is considerably improved
by increasing mixtures.

When we use single-mixture HMMs, the formant structure
of spectrum corresponding to each mean vector µq,i might be
vague since µq,i is the average of different speech spectra. One
can increase the number of decision tree leaf clusters. However,
it might result in perceivable discontinuities in synthetic speech
since overly large tree will be overspecialized to training data and
generalized poorly. We expect that the proposed algorithm can
avoid this situation in a simple manner.

4. CONCLUSION

This paper has derived an algorithm for speech parameter genera-
tion from HMM whose observation vector consists of spectral pa-
rameter vector and its dynamic feature vectors. In the algorithm,
we assume that the state sequence (state and mixture sequence
for the multi-mixture case) or a part of the state sequence is un-
observable (i.e., hidden or latent). The algorithm is based on an
EM algorithm. As a result, it iterates the forward-backward algo-
rithm and the parameter generation algorithm for the case where
state sequence is given. Experimental results have shown that
by using the algorithm, we can reproduce clear formant structure
from multi-mixture HMMs as compared with that produced from
single-mixture HMMs. Results of subjective evaluation tests of
the synthetic speech will be presented in the near future.
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